如何识别图片文字,PaddleOCR机器学习开源项目使用 | 机器学习(2)

本文涉及的产品
票据凭证识别,票据凭证识别 200次/月
车辆物流识别,车辆物流识别 200次/月
教育场景识别,教育场景识别 200次/月
简介: 如何识别图片文字,PaddleOCR机器学习开源项目使用 | 机器学习

测试代码

官方给出了两种模式,一是命令行执行,一是代码执行。为了直观的看到配置,我这里使用的是代码模式。


准备一张带文字的图片



image.png


测试代码如下

#!/user/bin/env python
# coding=utf-8
"""
@project : ocr_paddle
@author  : huyi
@file   : test.py
@ide    : PyCharm
@time   : 2021-11-15 14:56:20
"""
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, use_gpu=False,
                lang="ch")  # need to run only once to download and load model into memory
img_path = './data/2.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    # print(line[-1][0], line[-1][1])
    print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')



代码说明

1、因为我的电脑没有显卡,所以设置了use_gpu=False。

2、显示结果部分会将识别的文字用框标出来,并且展示识别的结果。

验证一下


image.png


我们看到,打印的内容有识别出来的每句话所在的图片位置,以及识别结果和可信度。而上面的结果图中,将每句话对应的文字都框了出来。效果很不错!


参数补充

官方还给出了一些参数,可以调整输出的内容。可以参看quickstart.md文件。参数补充:


- 单独使用检测:设置`--rec`为`false`

- 单独使用识别:设置`--det`为`false`

官方还提供一个标准的json结构输出数据

  PP-Structure的返回结果为一个dict组成的list,示例如下
  ```shell
  [{   'type': 'Text',
        'bbox': [34, 432, 345, 462],
        'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                  [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
    }
  ]
  ```



总结

总的来说,这个项目还是很有意思的,训练的部分我就不多赘述了,毕竟准备数据挺麻烦的。回头我再想想这个项目可不可以魔改成好用的工具。

相关文章
|
12天前
|
存储 人工智能 云栖大会
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
|
14天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
16天前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。
|
23天前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
368 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
24天前
|
机器学习/深度学习 人工智能 并行计算
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
290 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
|
4月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
393 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
4月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
85 6
|
4月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
61 1
|
4月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
405 1
|
5月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码

热门文章

最新文章