带你学MySQL系列 | “数据分析师”面试最怕被问到的SQL优化问题(下)(六)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 带你学MySQL系列 | “数据分析师”面试最怕被问到的SQL优化问题(下)(六)

② 优化2:使用了in有时候会导致索引失效,基于此有了如下一种优化思路。

将in字段放在最后面。需要注意一点:每次创建新的索引的时候,最好是删除以前的废弃索引,否则有时候会产生干扰(索引之间)。

# 删除以前的索引
drop index typeid_authorid_bid on book;
# 再次创建索引
create index authorid_typeid_bid on book(authorid,typeid,bid);
# 再次查看执行计划
explain 
select bid from book 
where authorid=1  and typeid in(2,3)  
order by typeid desc ;


结果如下:

image.png

结果分析:这里虽然没有变化,但是这是一种优化思路。


总结如下:


a.最佳做前缀,保持索引的定义和使用的顺序一致性。

b.索引需要逐步优化(每次创建新索引,根据情况需要删除以前的废弃索引)。

c.将含in的范围查询,放到where条件的最后,防止失效。

本例中同时出现了Using where(需要回原表); Using index(不需要回原表):原因,where authorid=1 and typeid in(2,3)中authorid在索引(authorid,typeid,bid)中,因此不需要回原表(直接在索引表中能查到);而typeid虽然也在索引(authorid,typeid,bid)中,但是含in的范围查询已经使该typeid索引失效,因此相当于没有typeid这个索引,所以需要回原表(using where);


下面这个例子,没有了in,则不会出现using where:


explain select bid from book 
where  authorid=1 and typeid =3
order by typeid desc ;


结果如下:

image.png


3)两表优化

# 创建teacher2新表
create table teacher2
(
      tid int(4) primary key,
      cid int(4) not null
);
# 插入数据
insert into teacher2 values(1,2);
insert into teacher2 values(2,1);
insert into teacher2 values(3,3);
# 创建course2新表
create table course2
(
  cid int(4) ,
  cname varchar(20)
);
# 插入数据
insert into course2 values(1,'java');
insert into course2 values(2,'python');
insert into course2 values(3,'kotlin');


结果如下:

image.png


案例:使用一个左连接,查找教java课程的所有信息。


explain 
select *
from teacher2 t 
left outer join course2 c
on t.cid=c.cid 
where c.cname='java';


结果如下:

image.png


① 优化

对于两张表,索引往哪里加?答:对于表连接,小表驱动大表。索引建立在经常使用的字段上。

为什么小表驱动大表好一些呢?


小表:10
  大表:300
# 小表驱动大表
select ...where 小表.x10=大表.x300 ;
for(int i=0;i<小表.length10;i++)
{
  for(int j=0;j<大表.length300;j++)
  {
  ...
    }
}
# 大表驱动小表
select ...where 大表.x300=小表.x10 ;
for(int i=0;i<大表.length300;i++)
{
    for(int j=0;j<小表.length10;j++)
    {
        ...
    }
}

分析:以上2个FOR循环,最终都会循环3000次;但是对于双层循环来说:一般建议,将数据小的循环,放外层。数据大的循环,放内层。不用管这是为什么,这是编程语言的一个原则,对于双重循环,外层循环少,内存循环大,程序的性能越高。


结论:当编写【…on t.cid=c.cid】时,将数据量小的表放左边(假设此时t表数据量小,c表数据量大。)


我们已经知道了,对于两表连接,需要利用小表驱动大表。例如【…on t.cid=c.cid】,t如果是小表(10条),c如果是大表(300条),那么t每循环1次,就需要循环300次,即t表的t.cid字段属于经常使用的字段,因此需要给cid字段添加索引。


更深入的说明:一般情况下,左连接给左表加索引。右连接给右表加索引。其他表需不需要加索引,我们逐步尝试。


# 给左表的字段加索引
create index cid_teacher2 on teacher2(cid);
# 查看执行计划
explain 
select *
from teacher2 t 
left outer join course2 c
on t.cid=c.cid 
where c.cname='java';


结果如下:

image.png

当然你可以下去接着优化,给cname添加一个索引。索引优化是一个逐步的过程,需要一点点尝试。

# 给cname的字段加索引
create index cname_course2 on course2(cname);
# 查看执行计划
explain 
select t.cid,c.cname
from teacher2 t 
left outer join course2 c
on t.cid=c.cid 
where c.cname='java';


结果如下:

image.png

最后补充一个:Using join buffer是extra中的一个选项,表示Mysql引擎使用了连接缓存,即MySQL底层动了你的SQL,你写的太差了。


4)三表优化

大于等于2张表,优化原则一样;

小表驱动大表 ;

索引建立在经常查询的字段上;

7、避免索引失效的一些原则

① 复合索引需要注意的点

a.复合索引,不要跨列或无序使用(最佳左前缀);

b.复合索引,尽量使用全索引匹配,也就是说,你建立几个索引,就使用几个索引;

② 不要在索引上进行任何操作(计算、函数、类型转换),否则索引失效

explain select * from book where authorid = 1 and typeid = 2;
explain select * from book where authorid*2 = 1 and typeid = 2 ;


结果如下:

image.png


③ 索引不能使用不等于(!= <>)或is null (is not null),否则自身以及右侧所有全部失效(针对大多数情况)。复合索引中如果有>,则自身和右侧索引全部失效。

# 针对不是复合索引的情况
explain select * from book where authorid != 1 and typeid =2 ;
explain select * from book where authorid != 1 and typeid !=2 ;


结果如下:

image.png

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2天前
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
1月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
2月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
1月前
|
SQL 缓存 关系型数据库
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴因未能系统梳理MySQL缓存机制而在美团面试中失利。为此,尼恩对MySQL的缓存机制进行了系统化梳理,包括一级缓存(InnoDB缓存)和二级缓存(查询缓存)。同时,他还将这些知识点整理进《尼恩Java面试宝典PDF》V175版本,帮助大家提升技术水平,顺利通过面试。更多技术资料请关注公号【技术自由圈】。
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
|
1月前
|
SQL 算法 关系型数据库
面试:什么是死锁,如何避免或解决死锁;MySQL中的死锁现象,MySQL死锁如何解决
面试:什么是死锁,死锁产生的四个必要条件,如何避免或解决死锁;数据库锁,锁分类,控制事务;MySQL中的死锁现象,MySQL死锁如何解决
|
1月前
|
SQL 关系型数据库 MySQL
美团面试:Mysql如何选择最优 执行计划,为什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴面试美团时遇到了关于MySQL执行计划的面试题:“MySQL如何选择最优执行计划,为什么?”由于缺乏系统化的准备,小伙伴未能给出满意的答案,面试失败。为此,尼恩为大家系统化地梳理了MySQL执行计划的相关知识,帮助大家提升技术水平,展示“技术肌肉”,让面试官“爱到不能自已”。相关内容已收录进《尼恩Java面试宝典PDF》V175版本,供大家参考学习。
|
2月前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
2月前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。
|
2月前
|
存储 关系型数据库 MySQL
面试官:MySQL一次到底插入多少条数据合适啊?
本文探讨了数据库插入操作的基础知识、批量插入的优势与挑战,以及如何确定合适的插入数据量。通过面试对话的形式,详细解析了单条插入与批量插入的区别,磁盘I/O、内存使用、事务大小和锁策略等关键因素。最后,结合MyBatis框架,提供了实际应用中的批量插入策略和优化建议。希望读者不仅能掌握技术细节,还能理解背后的原理,从而更好地优化数据库性能。