如何保障 MySQL 和 Redis 的数据一致性?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 之前也看了很多相关的文章,但是感觉讲的都不好,很多文章都会去讲各种策略,比如(旁路缓存)策略、(读穿 / 写穿)策略和(写回)策略等,感觉意义真的不大,然后有的文章也只讲了部分情况,也没有告诉最优解。

之前也看了很多相关的文章,但是感觉讲的都不好,很多文章都会去讲各种策略,比如(旁路缓存)策略、(读穿 / 写穿)策略和(写回)策略等,感觉意义真的不大,然后有的文章也只讲了部分情况,也没有告诉最优解。


我直接先抛一下结论:在满足实时性的条件下,不存在两者完全保存一致的方案,只有最终一致性方案。 根据网上的众多解决方案,总结出 6 种,直接看目录:

SYXP)))WUL@CBQ616~ZJB$G.png

目前看到最好的一篇文章,是苏三哥的《如何保证数据库和缓存双写一致性?》,所以本文很多地方会有借鉴,特此说明!


不好的方案


1. 先写 MySQL,再写 Redis

PRZW0[QK[E2W@ADD4NA@IGA.png

图解说明:

  • 这是一副时序图,描述请求的先后调用顺序;
  • 橘黄色的线是请求 A,黑色的线是请求 B;
  • 橘黄色的文字,是 MySQL 和 Redis 最终不一致的数据;
  • 数据是从 10 更新为 11;
  • 后面所有的图,都是这个含义,不再赘述。

请求 A、B 都是先写 MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。

这个图已经画的很清晰了,我就不用再去啰嗦了吧,不过这里有个前提,就是对于读请求,先去读 Redis,如果没有,再去读 DB,但是读请求不会再回写 Redis。 大白话说一下,就是读请求不会更新 Redis。


2. 先写 Redis,再写 MySQL

image.gif~1LOA)Q)$WEG_Z(VNTY~U4A.png

同“先写 MySQL,再写 Redis”,看图可秒懂。


3. 先删除 Redis,再写 MySQL

这幅图和上面有些不一样,前面的请求 A 和 B 都是更新请求,这里的请求 A 是更新请求,但是请求 B 是读请求,且请求 B 的读请求会回写 Redis。

UF0}YL0K_O4%J~[SB8XF)ON.png

请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。

这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。


好的方案



4. 先删除 Redis,再写 MySQL,再删除 Redis

对于“先删除 Redis,再写 MySQL”,如果要解决最后的不一致问题,其实再对 Redis 重新删除即可,这个也是大家常说的“缓存双删”。

ZZ8{61A9$)4YD%AJ~WIBB)W.png

为了便于大家看图,对于蓝色的文字,“删除缓存 10”必须在“回写缓存10”后面,那如何才能保证一定是在后面呢?网上给出的第一个方案是,让请求 A 的最后一次删除,等待 500ms。

对于这种方案,看看就行,反正我是不会用,太 Low 了,风险也不可控。

那有没有更好的方案呢,我建议异步串行化删除,即删除请求入队列

image.gif}[MFG%FVDXE%VX[]EI4`U`G.png

异步删除对线上业务无影响,串行化处理保障并发情况下正确删除。

如果双删失败怎么办,网上有给 Redis 加一个缓存过期时间的方案,这个不敢苟同。个人建议整个重试机制,可以借助消息队列的重试机制,也可以自己整个表,记录重试次数,方法很多。

简单小结一下:

  • “缓存双删”不要用无脑的 sleep 500 ms;
  • 通过消息队列的异步&串行,实现最后一次缓存删除;
  • 缓存删除失败,增加重试机制。


5. 先写 MySQL,再删除 Redis

image.gifBCORETY5_O~@6HJT$[}3OML.png

对于上面这种情况,对于第一次查询,请求 B 查询的数据是 10,但是 MySQL 的数据是 11,只存在这一次不一致的情况,对于不是强一致性要求的业务,可以容忍。(那什么情况下不能容忍呢,比如秒杀业务、库存服务等。)

当请求 B 进行第二次查询时,因为没有命中 Redis,会重新查一次 DB,然后再回写到 Reids。

那什么情况下会出现不一致的情况呢?苏三哥在文章《如何保证数据库和缓存双写一致性?》有过说明。

image.gifBMOC{`6MK3(7NNRPK`SWJK2.png

这里需要满足 2 个条件:

  • 缓存刚好自动失效;
  • 请求 B 从数据库查出 10,回写缓存的耗时,比请求 A 写数据库,并且删除缓存的还长。

对于第二个条件,我们都知道更新 DB 肯定比查询耗时要长,所以出现这个情况的概率很小,同时满足上述条件的情况更小。


6. 先写 MySQL,通过 Binlog,异步更新 Redis

这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。

KK@C]AGA1`B[]B{)75_QU%M.png

这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数据也会存在不一致的情况。

所以这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。


几种方案比较


我们对比上面讨论的 6 种方案:

  1. 先写 Redis,再写 MySQL
  • 这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;
  • 我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?
  1. 先写 MySQL,再写 Redis
  • 对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;
  • 当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。
  1. 先删除 Redis,再写 MySQL
  • 这种方式,我还真没用过,直接忽略吧。
  1. 先删除 Redis,再写 MySQL,再删除 Redis
  • 这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。
  1. 先写 MySQL,再删除 Redis
  • 比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;
  • 这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。
  1. 先写 MySQL,通过 Binlog,异步更新 Redis
  • 对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级;
  • 纯粹的高并发场景,不建议用这种方案,比如抢购、秒杀等。

个人结论:

  • 实时一致性方案:采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。
  • 最终一致性方案:采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。
相关文章
|
3月前
|
关系型数据库 应用服务中间件 nginx
Docker一键安装中间件(RocketMq、Nginx、MySql、Minio、Jenkins、Redis)
本系列脚本提供RocketMQ、Nginx、MySQL、MinIO、Jenkins和Redis的Docker一键安装与配置方案,适用于快速部署微服务基础环境。
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
12天前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
148 5
|
7月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
1月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
76 3
|
1月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
28天前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
29天前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
29天前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。

热门文章

最新文章

推荐镜像

更多