Java并发编程 - HashMap 死循环

简介: Java并发编程 - HashMap 死循环

问题

最近的几次面试中,我都问了是否了解HashMap在并发使用时可能发生死循环,导致cpu100%,结果让我很意外,都表示不知道有这样的问题,让我意外的是面试者的工作年限都不短。

由于HashMap并非是线程安全的,所以在高并发的情况下必然会出现问题,这是一个普遍的问题,虽然网上分析的文章很多,还是觉得有必须写一篇文章,让关注我公众号的同学能够意识到这个问题,并了解这个死循环是如何产生的。

如果是在单线程下使用HashMap,自然是没有问题的,如果后期由于代码优化,这段逻辑引入了多线程并发执行,在一个未知的时间点,会发现CPU占用100%,居高不下,通过查看堆栈,你会惊讶的发现,线程都Hang在hashMap的get()方法上,服务重启之后,问题消失,过段时间可能又复现了。

这是为什么?

原因分析

在了解来龙去脉之前,我们先看看HashMap的数据结构。

在内部,HashMap使用一个Entry数组保存key、value数据,当一对key、value被加入时,会通过一个hash算法得到数组的下标index,算法很简单,根据key的hash值,对数组的大小取模 hash & (length-1),并把结果插入数组该位置,如果该位置上已经有元素了,就说明存在hash冲突,这样会在index位置生成链表。

如果存在hash冲突,最惨的情况,就是所有元素都定位到同一个位置,形成一个长长的链表,这样get一个值时,最坏情况需要遍历所有节点,性能变成了O(n),所以元素的hash值算法和HashMap的初始化大小很重要。

当插入一个新的节点时,如果不存在相同的key,则会判断当前内部元素是否已经达到阈值(默认是数组大小的0.75),如果已经达到阈值,会对数组进行扩容,也会对链表中的元素进行rehash。

实现

HashMap的put方法实现:

1、判断key是否已经存在

publicVput(Kkey, Vvalue) {
if (key==null)
returnputForNullKey(value);
inthash=hash(key);
inti=indexFor(hash, table.length);
// 如果key已经存在,则替换value,并返回旧值for (Entry<K,V>e=table[i]; e!=null; e=e.next) {
Objectk;
if (e.hash==hash&& ((k=e.key) ==key||key.equals(k))) {
VoldValue=e.value;
e.value=value;
e.recordAccess(this);
returnoldValue;
        }
    }
modCount++;
// key不存在,则插入新的元素addEntry(hash, key, value, i);
returnnull;
}

2、检查容量是否达到阈值threshold

voidaddEntry(inthash, Kkey, Vvalue, intbucketIndex) {
if ((size>=threshold) && (null!=table[bucketIndex])) {
resize(2*table.length);
hash= (null!=key) ?hash(key) : 0;
bucketIndex=indexFor(hash, table.length);
    }
createEntry(hash, key, value, bucketIndex);
}

如果元素个数已经达到阈值,则扩容,并把原来的元素移动过去。

3、扩容实现

voidresize(intnewCapacity) {
Entry[] oldTable=table;
intoldCapacity=oldTable.length;
    ...
Entry[] newTable=newEntry[newCapacity];
    ...
transfer(newTable, rehash);
table=newTable;
threshold= (int)Math.min(newCapacity*loadFactor, MAXIMUM_CAPACITY+1);
}

这里会新建一个更大的数组,并通过transfer方法,移动元素。

voidtransfer(Entry[] newTable, booleanrehash) {
intnewCapacity=newTable.length;
for (Entry<K,V>e : table) {
while(null!=e) {
Entry<K,V>next=e.next;
if (rehash) {
e.hash=null==e.key?0 : hash(e.key);
            }
inti=indexFor(e.hash, newCapacity);
e.next=newTable[i];
newTable[i] =e;
e=next;
        }
    }
}

移动的逻辑也很清晰,遍历原来table中每个位置的链表,并对每个元素进行重新hash,在新的newTable找到归宿,并插入。

案例分析

假设HashMap初始化大小为4,插入个3节点,不巧的是,这3个节点都hash到同一个位置,如果按照默认的负载因子的话,插入第3个节点就会扩容,为了验证效果,假设负载因子是1。

voidtransfer(Entry[] newTable, booleanrehash) {
intnewCapacity=newTable.length;
for (Entry<K,V>e : table) {
while(null!=e) {
Entry<K,V>next=e.next;
if (rehash) {
e.hash=null==e.key?0 : hash(e.key);
            }
inti=indexFor(e.hash, newCapacity);
e.next=newTable[i];
newTable[i] =e;
e=next;
        }
    }
}

以上是节点移动的相关逻辑。

image.png

插入第4个节点时,发生rehash,假设现在有两个线程同时进行,线程1和线程2,两个线程都会新建新的数组。

image.png

假设 线程2 在执行到Entry next = e.next;之后,cpu时间片用完了,这时变量e指向节点a,变量next指向节点b。

线程1继续执行,很不巧,a、b、c节点rehash之后又是在同一个位置7,开始移动节点

第一步,移动节点a

image.png

第二步,移动节点b

image.png

注意,这里的顺序是反过来的,继续移动节点c

image.png

这个时候 线程1 的时间片用完,内部的table还没有设置成新的newTable, 线程2 开始执行,这时内部的引用关系如下:

image.png

这时,在 线程2 中,变量e指向节点a,变量next指向节点b,开始执行循环体的剩余逻辑。

Entry<K,V>next=e.next;
inti=indexFor(e.hash, newCapacity);
e.next=newTable[i];
newTable[i] =e;
e=next;

执行之后的引用关系如下图

image.png

执行后,变量e指向节点b,因为e不是null,则继续执行循环体,执行后的引用关系

image.png

变量e又重新指回节点a,只能继续执行循环体,这里仔细分析下:

1、执行完Entry next = e.next;,目前节点a没有next,所以变量next指向null;

2、e.next = newTable[i]; 其中 newTable[i] 指向节点b,那就是把a的next指向了节点b,这样a和b就相互引用了,形成了一个环;

3、newTable[i] = e 把节点a放到了数组i位置;

4、e = next; 把变量e赋值为null,因为第一步中变量next就是指向null;

所以最终的引用关系是这样的:

image.png

节点a和b互相引用,形成了一个环,当在数组该位置get寻找对应的key时,就发生了死循环。

另外,如果线程2把newTable设置成到内部的table,节点c的数据就丢了,看来还有数据遗失的问题。

总结

所以在并发的情况,发生扩容时,可能会产生循环链表,在执行get的时候,会触发死循环,引起CPU的100%问题,所以一定要避免在并发环境下使用HashMap。

曾经有人把这个问题报给了Sun,不过Sun不认为这是一个bug,因为在HashMap本来就不支持多线程使用,要并发就用ConcurrentHashmap。


目录
相关文章
|
2月前
|
IDE Java 编译器
java编程最基础学习
Java入门需掌握:环境搭建、基础语法、面向对象、数组集合与异常处理。通过实践编写简单程序,逐步深入学习,打牢编程基础。
210 1
|
2月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
149 6
|
3月前
|
SQL Java 数据库
2025 年 Java 从零基础小白到编程高手的详细学习路线攻略
2025年Java学习路线涵盖基础语法、面向对象、数据库、JavaWeb、Spring全家桶、分布式、云原生与高并发技术,结合实战项目与源码分析,助力零基础学员系统掌握Java开发技能,从入门到精通,全面提升竞争力,顺利进阶编程高手。
601 1
|
2月前
|
安全 前端开发 Java
从反射到方法句柄:深入探索Java动态编程的终极解决方案
从反射到方法句柄,Java 动态编程不断演进。方法句柄以强类型、低开销、易优化的特性,解决反射性能差、类型弱、安全性低等问题,结合 `invokedynamic` 成为支撑 Lambda 与动态语言的终极方案。
150 0
|
4月前
|
安全 Java 数据库连接
2025 年最新 Java 学习路线图含实操指南助你高效入门 Java 编程掌握核心技能
2025年最新Java学习路线图,涵盖基础环境搭建、核心特性(如密封类、虚拟线程)、模块化开发、响应式编程、主流框架(Spring Boot 3、Spring Security 6)、数据库操作(JPA + Hibernate 6)及微服务实战,助你掌握企业级开发技能。
599 3
|
3月前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
441 100
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
233 16
|
3月前
|
NoSQL Java 关系型数据库
超全 Java 学习路线,帮你系统掌握编程的超详细 Java 学习路线
本文为超全Java学习路线,涵盖基础语法、面向对象编程、数据结构与算法、多线程、JVM原理、主流框架(如Spring Boot)、数据库(MySQL、Redis)及项目实战等内容,助力从零基础到企业级开发高手的进阶之路。
293 1
|
4月前
|
安全 算法 Java
Java泛型编程:类型安全与擦除机制
Java泛型详解:从基础语法到类型擦除机制,深入解析通配符与PECS原则,探讨运行时类型获取技巧及最佳实践,助你掌握泛型精髓,写出更安全、灵活的代码。
|
4月前
|
安全 Java Shell
Java模块化编程(JPMS)简介与实践
本文全面解析Java 9模块化系统(JPMS),帮助开发者解决JAR地狱、类路径冲突等常见问题,提升代码的封装性、性能与可维护性。内容涵盖模块化核心概念、module-info语法、模块声明、实战迁移、多模块项目构建、高级特性及最佳实践,同时提供常见问题和面试高频题解析,助你掌握Java模块化编程精髓,打造更健壮的应用。