k-means——平面上100个样本点的聚类分析(通俗易懂)

简介: k-means——平面上100个样本点的聚类分析(通俗易懂)

1、k-means聚类的算法流程

1.随机选取n个样本作为初始类中心;

2.计算各样本与各类中心的距离;

3.将各样本归于最近的类中心点;

4.求各类的样本的均值,作为新的类中心;

5.判定:若类中心不再发生变动或达到指定迭代次数,那么算法结束,否则回到第2步。

image.png

2、一个形象的例子:讲述k-means聚类原理

1)将下面这四个点,分为两类

image.png


2)聚类流程如下


image.png

3、平面上100个点的k-means聚类分析

image.png

代码如下:


import numpy as np
# 构造数据集
x = np.linspace(0,99,100)
y = np.linspace(100,199,100)
aa = 0      # aa变量是为了记录,迭代次数
k = 2       # 指定将数据分为几个类别
n = len(x)  # 数据集的个数 
# 1、随机选取两个点,作为初始的类中心;
center0 = np.array([x[0],y[0]])
center1 = np.array([x[1],y[1]])
dis = np.zeros([n,k+1])
while aa >= 0:
    # 2、求各样本到各类中心的距离;
    for i in range(n):
        dis[i,0] = np.sqrt((x[i]-center0[0])**2+(y[i]-center0[1])**2)
        dis[i,1] = np.sqrt((x[i]-center1[0])**2+(y[i]-center1[1])**2)
        # 3、归类:将样本归类为,距离其最近的类中的所属类;
        dis[i,2] = np.argmin(dis[i,:2])
    # 4、再次计算各类样本的均值,作为新的类中心;
    index0 = dis[:,2] == 0
    index1 = dis[:,2] == 1
    center0_new = np.array([x[index0].mean(),y[index0].mean()])
    center1_new = np.array([x[index1].mean(),y[index1].mean()])
    # 5、判断类中心,是否发生变化。如果发生变化,就回到第2步;否则,break退出循环;
    if all((center0 == center0_new) & (center1 == center1_new)):
        break
    center0 = center0_new
    center1 = center1_new
    aa += 1
print(len(dis[dis[:,2] == 0]),len(dis[dis[:,2] == 1]))
print(center0,center1,aa)


结果如下:

image.png

结果分析:

 从上面的结果中可以看到,最终的数据被分为的两类,每一类各有50个点。同时我们求出了最终的类中心点,一个是(24,5,124,5),另一个是(74.5,174.5),并且还求出了最后的迭代次数为7,也就是说:初始类中心一共迭代了7次后,就不再发生变化了。


相关文章
|
10月前
|
机器学习/深度学习 数据采集 算法
KMeans+DBSCAN密度聚类+层次聚类的使用(附案例实战)
KMeans+DBSCAN密度聚类+层次聚类的使用(附案例实战)
816 0
|
7月前
|
数据采集 算法 数据可视化
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
本文介绍了一个基于K-Means聚类算法的NBA球员数据分析项目,该项目通过采集和分析球员的得分、篮板、助攻等统计数据,使用轮廓系数法和拐点法确定最优聚类数,将球员分为不同群组,并提供了一个可视化界面以便直观比较不同群组的球员表现。
135 0
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
|
机器学习/深度学习 运维 算法
K-Means(K-均值)聚类算法理论和实战
K-Means(K-均值)聚类算法理论和实战
259 1
|
9月前
|
机器学习/深度学习 数据挖掘
机器学习之聚类——谱聚类简介及其对特殊形状区域数据的聚类
机器学习之聚类——谱聚类简介及其对特殊形状区域数据的聚类
68 0
|
10月前
|
数据采集 算法 数据可视化
MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究
MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究
|
10月前
|
算法 数据可视化 数据挖掘
使用Python实现高斯混合模型聚类算法
使用Python实现高斯混合模型聚类算法
204 3
|
10月前
|
算法 数据可视化 数据挖掘
使用Python实现K均值聚类算法
使用Python实现K均值聚类算法
89 1
|
10月前
|
机器学习/深度学习 数据采集 SQL
R语言K-Means(K均值聚类)和层次聚类算法对微博用户特征数据研究
R语言K-Means(K均值聚类)和层次聚类算法对微博用户特征数据研究
|
10月前
|
机器学习/深度学习 算法 数据可视化
R语言谱聚类、K-MEANS聚类分析非线性环状数据比较
R语言谱聚类、K-MEANS聚类分析非线性环状数据比较
|
10月前
|
机器学习/深度学习 算法 数据挖掘
r语言聚类分析:k-means和层次聚类
r语言聚类分析:k-means和层次聚类

热门文章

最新文章