C++的lambda是函数还是对象?

简介: 关于C++的lambda是函数还是对象,这其实不是一个一概而论的问题。

关于C++的lambda是函数还是对象,这其实不是一个一概而论的问题。


先说结论:


  • 对于有捕获的lambda,其等价于对象。


  • 对于没有任何捕获的lambda,其等价于函数!


首先,很多C++程序员从lambda 用法上反推容易发现是对象,因为lambda可以捕获!这是函数做不到的。的确,比如:


int n = 100;
auto foo = [n](int a) {
    return a > n;
};
cout<< foo(99);


如果编译器要实现foo,大致类比这种写法(可能真实的实现细节不是这样,但思路类似)∶


struct Foo {
    Foo(int i) {n=i;}
    bool operator()(int a) {
        return a > n;
    }
private:
    int n;
};
...
int n = 100;
Foo foo(n);
cout<< foo(99);


如果是引用捕获了变量,那么struct内有一个指针成员持有被引用捕获的变量的地址。


比如:


set<int> ns = {100, 200, 300};
auto foo = [&ns](int a) {
    return ns.find(a);
};
cout<< foo(99);


大致等价于:


struct Foo {
    Foo(set<int>* p) {p_ns = p;}
    bool operator()(int a) {
        auto &ns = *p-ns;
        return ns.find(a);
    }
private:
    set<int>* p_ns;
};
...
set<int> ns = {100, 200, 300};
Foo foo(&ns);
cout<< foo(99);


然而……这并不是全部!


在没有捕获任何东西的时候,lambda其实是等价于普通的函数的!可以用Linux C中函数pthread_create()来验证!它只能接收一个参数是void*,返回值也是void*的回调函数。


神奇的是,无参的lambda也可以被pthread_create()使用!


#include <iostream>
#include <pthread.h>
using namespace std;
struct A {
    void* operator()(void*) {
        cout<<"xxxx"<<endl;
        return nullptr;
    }
};
int main() {
    A a;
    a(NULL);
    pthread_t t;
    //pthread_create(&t, NULL, a, NULL); // 编译失败
    auto cb = [](void*)->void* {
        cout<<"xxxx"<<endl;
        return nullptr;
    };
    pthread_create(&t, NULL, cb, NULL); // 编译通过
    pthread_join(t, NULL);
    return 0;
}


上面代码还可以再改一下,让cb去捕获一个变量, 比如:


auto cb = [&](void*)->void* {
        cout<<"xxxx"<<endl;
        return nullptr;
    };
    pthread_create(&t, NULL, cb, NULL);


这时,给pthread_create()传入cb同样会编译失败!错误信息:


cb.cpp: In function ‘int main()’:
cb.cpp:23:30: error: cannot convert ‘main()::<lambda(void*)>’ to ‘void* (*)(void*)’
   23 |     pthread_create(&t, NULL, cb, NULL);
      |                              ^~
      |                              |
      |                              main()::<lambda(void*)>
In file included from /usr/include/x86_64-linux-gnu/c++/9/bits/gthr-default.h:35,
                 from /usr/include/x86_64-linux-gnu/c++/9/bits/gthr.h:148,
                 from /usr/include/c++/9/ext/atomicity.h:35,
                 from /usr/include/c++/9/bits/ios_base.h:39,
                 from /usr/include/c++/9/ios:42,
                 from /usr/include/c++/9/ostream:38,
                 from /usr/include/c++/9/iostream:39,
                 from cb.cpp:1:
/usr/include/pthread.h:200:15: note:   initializing argument 3 of ‘int pthread_create(pthread_t*, const pthread_attr_t*, void* (*)(void*), void*)’
  200 |       void *(*__start_routine) (void *),
      |       ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~


这其实也不难理解,C++在lambda的设计上也贯彻着零开销 (Zero Overhead)原则,也就是C++不在性能上干多余的事,显然函数比对象开销更小。所以即使同为lambda,在有无捕获的时候,其底层实现其实是截然不同的!


相关文章
|
3月前
|
程序员 编译器 C++
【实战指南】C++ lambda表达式使用总结
Lambda表达式是C++11引入的特性,简洁灵活,可作为匿名函数使用,支持捕获变量,提升代码可读性与开发效率。本文详解其基本用法与捕获机制。
136 47
|
8月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
4月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
95 0
|
6月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
186 12
|
8月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
7月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
7月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
7月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
362 6
|
7月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
9月前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
174 19