实时数据治理—当Atlas遇见Flink

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
实时计算 Flink 版,5000CU*H 3个月
简介: 实时数据治理—当Atlas遇见Flink

Atlas是Hadoop的数据治理和元数据框架。

Atlas是一组可扩展和可扩展的核心基础治理服务,使企业能够有效,高效地满足Hadoop中的合规性要求,并允许与整个企业数据生态系统集成。

Apache Atlas为组织提供了开放的元数据管理和治理功能,以建立其数据资产的目录,对这些资产进行分类和治理,并为数据科学家,分析师和数据治理团队提供围绕这些数据资产的协作功能。


而Flink则是实现Google Dataflow理念的大数据实时处理框架。

近年来,流处理变得越来越流行。实时数据分析有更大的价值所在,而现在许多系统都是连续的事件流,除了互联网领域,车联网,电力系统,穿戴设备等等的数据都是以事件流的方式收集并处理的。但目前为止大多数公司并没有用流处理的方式解决实时大数据分析的问题,原因可能是有限数据的存储更容易,而sql等分析方式也更简单。但只有用流的方式处理这种数据才是更符合实际的,当然这个困难很大,涉及数据一致性与时间的问题,其实已经属于物理学范畴。

基于Flink的实时数仓也开始在越来越多的公司搭建起来,相当于离线数仓,实时数仓的数据血缘更难收集,元数据管理也更加复杂。

在Atlas的官方也并不支持Flink的元数据管理,但是有很多公司都在努力尝试解决这个问题。


1、为什么Flink需要血缘


在Flink任务执行中随着业务的增加变得越来越复杂,在整个数据链路中Flink任务将会多次的调度执行。

image.png

而Flink的任务显示无法追踪Source/Sink的上游或下游全景链路。

image.png


2、Atlas的血缘实现


Atlas作为Hadoop体系的元数据管理工具,提供了丰富的元数据管理功能。

1、元数据检索

Atlas 提供了对元数据进行了全量 的收集,并支持多种元数据查询 或检索方式。

image.png

2、元数据标签

Atlas 提供了对元数据进行打标签 的功能,并且可以通过标签进行 反向查找。

image.png

3、血缘管理

Atlas 提供了交互式血缘分析和管理功能。

image.png

而Atlas的架构也非常的清晰。

Atlas 通过插件(Hook)的方式 在服务段注入捕获代码,并将元 数据提交至Kafka

Atlas服务从Kafka中消费元数据 信息,并将元数据写入到 JanusGraph(on HBase) 和 Solr 两个系统

Atlas 通过其他应用通过RestAPI 方式向其他第三方服务提供元数 据查询和检索的服务

image.png


3、两者对接


如何将两个系统打通呢?

需要实现三件事。

  1. 在Atlas中定义Flink的相关类型

image.png

2.在Flink中定义相关的Hook

image.png

3.抓取Flink Connector的元数据

image.png

最终效果:

单个Flink任务

image.png

多个Flink任务

image.png

当然在当前实现中还有很多的不足和改进之处。

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
58 1
|
2月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
49 1
|
2月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
48 0
|
2月前
|
大数据 流计算
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
46 0
|
3月前
|
SQL 安全 数据处理
揭秘数据脱敏神器:Flink SQL的神秘力量,守护你的数据宝藏!
【9月更文挑战第7天】在大数据时代,数据管理和处理尤为重要,尤其在保障数据安全与隐私方面。本文探讨如何利用Flink SQL实现数据脱敏,为实时数据处理提供有效的隐私保护方案。数据脱敏涉及在处理、存储或传输前对敏感数据进行加密、遮蔽或替换,以遵守数据保护法规(如GDPR)。Flink SQL通过内置函数和表达式支持这一过程。
85 2
|
4月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之同步时,上游批量删除大量数据(如20万条),如何提高删除效率
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

热门文章

最新文章

下一篇
无影云桌面