RocketMQ在存储架构上的极致追求

简介: 内容导读:MQ作为一款中间件,就需要承载全公司所有业务系统使用需求,并高效稳定运行。因此,MQ对本身运行效率有着非常苛刻的诉求。为了实现高效率,其实需要很多方面一起配合来完成。比如存储方式、内存使用、负载均衡等等。本文就RocketMQ为了实现高效的读写速率在存储架构上所做的努力,进行下阐述。

内容导读:MQ作为一款中间件,就需要承载全公司所有业务系统使用需求,并高效稳定运行。因此,MQ对本身运行效率有着非常苛刻的诉求。

为了实现高效率,其实需要很多方面一起配合来完成。比如存储方式、内存使用、负载均衡等等。

本文就RocketMQ为了实现高效的读写速率在存储架构上所做的努力,进行下阐述。


Part one / 存储结构选型对比


为了更方便地进行数据读写,消息在磁盘底层的文件目录设计,都需要关注和解决什么问题呢:

•首先,最基本的,是消息原始记录的写入和存储,且速率要快。•其次,要可以区分topic ,特别是允许消费者按topic进行接收。•再次,分布式集群下的消费者负载均衡。

那么问题来了,消息文件该怎么设计呢?

如果按topic来拆分文件进行存储,是否可以?


•缺点:生产者写入时选择对应的文件来写入。当数据量逐渐增大之后,定位查询文件地址,对磁盘的寻址所带来的性能损耗,将不再可以忽略。•优点:在消费时,可以直接加载相关文件进行读取,不会产生随机寻址。

如果用一整个文件来存消息呢?


•优点:所有的topic都被写入一个文件中,这样,写入时,只要将消息按到达顺序序追加到文件尾部即可,很容易实现顺序写入。•缺点:消费时,需要根据辅助信息来在文件中定位消息,会产生随机读取,损耗性能。

因此,不管是按topic拆开多文件存储,还是一整个文件存储做有利有弊,需要按实际需要进行权衡。


Part two / RocketMQ的存储方案选择


RocketMQ存储原始消息选择的是写同一个文件。

image.png

生产者将消息顺序写入commitLog文件

究其原因,是由于RocketMQ一般都是普通业务场景使用居多,生产者和topic众多,如果都独立开各自存储,每次消息生产的磁盘寻址对性能损耗是非常巨大的。

旁证侧引: kafka的文件存储方式,是按topic拆分成partation来进行的。是什么样的原因,让kafka做出了和RocketMQ相反的选择呢?

个人认为,主要还是使用场景的区别,kafka被优先选择用来进行大数据处理,相对于业务场景,数据维度的topic要少很多,并且kafka的生产者(sparkflume binlog等)机器会更加集中,这使得kafka选择按topic拆分文件的缺陷不那么突出,而大数据处理更重要的是消息读取,顺序读的优势得以被充分利用。"单partation,单cunsumer的kafka,性能异常的优秀" 是经常被提及的一个观点,其原因,相信有了上面的分析应该也差不多有结论了。


Part three / RocketMQ怎样平衡读性能


从第一部分的存储方案对比可以知道,RocketMQ为了保证消息写入效率,在存储结构上选择了顺序写,势必会对消息的读取和消费带来不便。

那么,它是怎么来平衡消费时的读取速率的呢?

关键问题是,找到一种途径,可以快速的在commitLog中定位到所需消息的位置。

从一堆数据中,快速定位想要的数据,这不是索引最擅长的事情么?所以,RocketMQ也为commitLog创建了索引文件,并且是区分topic的结构。

image.png

存储架构和存储设备构建链路示意图


RocketMQ 的消息体构成


image.png

消息体元素构成

•topic 是业务场景的唯一标识,不可缺少;•queueId 在申请topic的时候确定,关联着消费索引consumerQueue中的队列ID;•tags 是消息特殊标签,用于业务系统订阅时提前过滤(这个功能真的是太重要了,吃过苦的同学都清楚);•keys 是消息的关键字,构建index索引,用于关键字查询用;•msgBody 是真实消息体;

消息由发布者发布,并依次的、顺序的写到commitLog里,消息一旦被写入,是不可以更改顺序和内容的。commitLog规定最大1个G,达到规定大小则写新的一个文件。


索引结构和构建过程


image.png

consumerQueue结构和创建过程

consumerQueue 是一种机制,可以让消费端通过queue和commitLog之间的检索关系,快速定位到commitLog里边的具体消息内容,然后拉取进行消费。


consumerQueue 按 topic的不同,被分为不同的queue,根据queueId来被消费者订阅和消费;


其中每个索引项是一个固定大小为20bytes的记录,由消息在commitLog中的起始偏移量、消息体占用大小、type的hash码三部分构成。可以通过这三个部分快速定位到所需消息位置和类型。

而上述索引的构建过程,是在消息被写入commitLog时,专门的后台服务--putMessageService,将索引信息分发到 consumerQueue 和index文件里,来构建索引项。


建索引的过程,实际上是一种分而治之思维的落地,除了索引,还有redis中的各种指标维护,核心是 分散压力到每次请求,避免了大规模集中计算。


消息的消费


消费者对应consumerQueue不一定是一对一的,因此,怎么来让每个新的消费者来了不会重复消费呢?

image.png

offset消费位点记录

在消息成功被拉取并消费时,后台任务CommitOffsetManager 会将当前消费者,针对topic的消费位点进行记录,目的是让下一个或者重新启动单位消费者记住这个消费位点,不至于重复消费。

因此,整个文件目录就一目了然了:

image.png


Part four / 读效率的追求


虽然通过上述文件存储结构的分析,我们知道,消费者可以根据索引文件中的索引项来快速定位, 但事实上,消息的发布和消费,不可能直接针对磁盘进行读写操作的,这样效率会非常非常低。


实际上,我们的操作基本是针对一块内存进行操作的


利用NIO的内存映射机制,我们将commitLog的一部分文件交换到对外内存。然后利用操作系统的pageCache技术,在运行过程中把内存里的信息,与磁盘里的文件信息进行同步,或者交换:

•消息发布者,在发布消息的时候,首先把消息添加到内存里,然后根据刷盘的配置可以来指定是同步刷盘还是异步刷盘,来将内存中的数据同步到磁盘上。•消息的消费者,在消费消息的时候,大多数情况下,会直接命中到内存上,不会进行磁盘读取,但极个别的情况下,需要消费的消息,在内存中没法找到,这时候,就需要用换页技术,将相关的信息,拉取到内存中。为什么是相关信息,而不是需要什么拉取什么?这是有一个机制,来保证潜在的即将被消费的信息直接换入内存,来提交效率。

image.png

摘自:Qcon大会 RocketMQ分享资料


Part five / 总结


整体一套处理流程看下来,其实我们可以看到很多熟悉的身影,比如Mysql的索引,redis的统计信息记录等等,都非常相似。

其实,我们可以这么认为:对于信息存储和查询的处理方案大都如出一辙,只要把握住最核心的部分,然后根据实际业务诉求进行适配优化,基本都是可以达到期望的结果的。

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
7月前
|
消息中间件 大数据 关系型数据库
RocketMQ实战—3.基于RocketMQ升级订单系统架构
本文主要介绍了基于MQ实现订单系统核心流程的异步化改造、基于MQ实现订单系统和第三方系统的解耦、基于MQ实现将订单数据同步给大数据团队、秒杀系统的技术难点以及秒杀商详页的架构设计和基于MQ实现秒杀系统的异步化架构。
535 64
RocketMQ实战—3.基于RocketMQ升级订单系统架构
|
5月前
|
存储 机器学习/深度学习 缓存
软考软件评测师——计算机组成与体系结构(分级存储架构)
本内容全面解析了计算机存储系统的四大核心领域:虚拟存储技术、局部性原理、分级存储体系架构及存储器类型。虚拟存储通过软硬件协同扩展内存,支持动态加载与地址转换;局部性原理揭示程序运行特性,指导缓存设计优化;分级存储架构从寄存器到外存逐级扩展,平衡速度、容量与成本;存储器类型按寻址和访问方式分类,并介绍新型存储技术。最后探讨了存储系统未来优化趋势,如异构集成、智能预取和近存储计算等,为突破性能瓶颈提供了新方向。
|
1月前
|
存储 NoSQL 前端开发
【赵渝强老师】MongoDB的分布式存储架构
MongoDB分片通过将数据分布到多台服务器,实现海量数据的高效存储与读写。其架构包含路由、配置服务器和分片服务器,支持水平扩展,结合复制集保障高可用性,适用于大规模生产环境。
254 1
|
5月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
4038 9
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
|
5月前
|
存储 关系型数据库 MySQL
成本直降30%!RDS MySQL存储自动分层实战:OSS冷热分离架构设计指南
在日均订单量超500万的场景下,MySQL数据年增200%,但访问集中在近7天(85%)。通过冷热数据分离,将历史数据迁移至OSS,实现存储成本下降48%,年省72万元。结合RDS、OSS与Redis构建分层架构,自动化管理数据生命周期,优化查询性能与资源利用率,支撑PB级数据扩展。
338 3
|
5月前
|
存储 关系型数据库 数据库
高性能云盘:一文解析RDS数据库存储架构升级
性能、成本、弹性,是客户实际使用数据库过程中关注的三个重要方面。RDS业界率先推出的高性能云盘(原通用云盘),是PaaS层和IaaS层的深度融合的技术最佳实践,通过使用不同的存储介质,为客户提供同时满足低成本、低延迟、高持久性的体验。
|
7月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
2550 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
8月前
|
存储 数据采集 机器学习/深度学习
新闻聚合项目:多源异构数据的采集与存储架构
本文探讨了新闻聚合项目中数据采集的技术挑战与解决方案,指出单纯依赖抓取技术存在局限性。通过代理IP、Cookie和User-Agent的精细设置,可有效提高采集策略;但多源异构数据的清洗与存储同样关键,需结合智能化算法处理语义差异。正反方围绕技术手段的有效性和局限性展开讨论,最终强调综合运用代理技术与智能数据处理的重要性。未来,随着机器学习和自然语言处理的发展,新闻聚合将实现更高效的热点捕捉与信息传播。附带的代码示例展示了如何从多个中文新闻网站抓取数据并统计热点关键词。
376 2
新闻聚合项目:多源异构数据的采集与存储架构
|
8月前
|
存储 消息中间件 人工智能
基于 Apache RocketMQ 的 ApsaraMQ Serverless 架构升级
基于 Apache RocketMQ 的 ApsaraMQ Serverless 架构升级
186 0
|
1月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路