Python数据获取——图片数据提取

简介: 比如我随便从手机上传一张图片到我的电脑里,通过python可以获取这张照片的所有信息。如果是数码相机拍摄的照片,我们在属性里可以找到照片拍摄的时间,拍摄的经纬度,海拔高度。那么这些信息有什么作用呢?

比如我随便从手机上传一张图片到我的电脑里,通过python可以获取这张照片的所有信息。如果是数码相机拍摄的照片,我们在属性里可以找到照片拍摄的时间,拍摄的经纬度,海拔高度。


那么这些信息有什么作用呢?


有很多功能…比如用户画像,客户信息标签设定等等,用户喜欢拍摄照片的季节,时间点,所使用的相机的参数指标可以反应出一个人的金钱状况,对于其拍摄的内容,我们可以通过AI的方式对照片的内容信息进行提取,从而判断一个人的兴趣爱好。

5f00d3b98b69483cbacae8f55eaa66c7.png


一、利用exifread提取图片的EXIF信息



exifread介绍:


EXIF信息,是可交换图像文件的缩写,是专门为数码相机的照片设定的,可以记录数码照片的属性信息和拍摄数据。EXIF可以附加于JPEGTIFFRIFF等文件之中,为其增加有关数码相机拍摄信息的内容和索引图或图像处理软件的版本信息。

首先要安装ExifRead

pip3 install ExifRead
pic=r'D:\S072003Python\input\test\test.jpg'
import exifread
f = open(pic, 'rb')
tags = exifread.process_file(f)
print(tags) #内有相机型号,拍摄时间,经纬度等

fa0dc845d7c643c8a8836cbda091cfc8.png

tags

80e76d32666640c599d8dde8e5a64bf7.png

print(tags)和tags获取数据的格式不同。

tags['Image ImageWidth']
tags['Image ImageLength']
tags['Image ExifOffset']
tags['Image Orientation']
tags['Image DateTime']
tags['EXIF WhiteBalance']
tags['EXIF ISOSpeedRatings']
tags['EXIF FocalLength']
tags['EXIF Flash']
tags['EXIF LightSource']
exifcolumns=['Image ImageWidth','Image ImageLength','Image ExifOffset','Image Orientation','Image DateTime','EXIF WhiteBalance','EXIF ISOSpeedRatings','EXIF FocalLength','EXIF Flash','EXIF LightSource'] # 把要提取的数据都封装在列表当中
for i in range(len(exifcolumns)):
    print(tags[exifcolumns[i]]) # 使用循环拿到所有的数据

c39f32c5eec147babfba507f688dd1b2.png


二、循环遍历图片信息



任务:一次性获得以下图片的"Image ImageWidth"信息。写一个循环即可:

8d11f6503b584628b194a91f0ea8d42b.png

import exifread
import os
import pandas as pd 
import glob 
pic_list=glob.glob(r'C:\Users\Lenovo\Pictures\Saved Pictures\*.jpg')  # 如果是png,jpeg,bmp等数据格式,如何设置?
for i in pic_list:
    fr=open(i,'rb')
    tags=exifread.process_file(fr)
    if "Image ImageWidth" in tags:  # 条件判断,因为并不是所有的照片都有"Image ImageWidth"
        print(tags["Image ImageWidth"])   
# 经纬度获取
import exifread
import os
import pandas as pd 
import glob 
pic_list=glob.glob(r'C:\Users\Lenovo\Pictures\Saved Pictures\*.jpg')  
latlonlists=[]
for i in pic_list:
    fr=open(i,'rb')
    tags=exifread.process_file(fr)
    if "GPS GPSLatitude" in tags:  # 条件判断,因为并不是所有的照片都有"Image ImageWidth"
        # 维度转换
        lat_ref=tags["GPS GPSLatitudeRef"]
        lat=tags["GPS GPSLatitude"].printable[1:-1].replace(" ","").replace("/",",").split(",")
        lat=float(lat[0])+float(lat[1])/60+float(lat[2])/3600
        if lat_ref  in  ["N"]:    # 表示是南半球的数据
            lat=lat*(-1)
        # 经度转换
        lon_ref=tags["GPS GPSLongitudeRef"]
        lon=tags["GPS GPSLongitude"].printable[1:-1].replace("","").replace("/",",").split(",")
        lon=float(lon[0])+float(lon[1])/60+float(lon[2])/3600
        if lon_ref  in  ["E"]:    # 表示是西半球的数据
            lon=lon*(-1)
        print("维度:",lat,"经度:",lon)
        latlonlist=[lat,lon]
        latlonlists.append(latlonlist)  


相关文章
|
19天前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
336 1
|
20天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
222 0
|
1月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
12天前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
21天前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
29天前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
1月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
机器学习/深度学习 编解码 Python
Python图片上采样工具 - RealESRGANer
Real-ESRGAN基于深度学习实现图像超分辨率放大,有效改善传统PIL缩放的模糊问题。支持多种模型版本,推荐使用魔搭社区提供的预训练模型,适用于将小图高质量放大至大图,放大倍率越低效果越佳。
188 3
|
1月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
394 0

推荐镜像

更多