1 简介
脉冲压缩雷达(Pulse Compression Radar , PCR)的定义是,发射端发射经编码或调制的宽脉冲,接收端处理后输出窄脉冲的雷达。目前,脉冲压缩雷达发射信号的调制方式主要有线性调频、非线性调频和相位编码等几种。
2 部分代码
function varargout = test1(varargin)%TEST1 M-file for test1.fig% TEST1, by itself, creates a new TEST1 or raises the existing% singleton*.%% H = TEST1 returns the handle to a new TEST1 or the handle to% the existing singleton*.%% TEST1('Property','Value',...) creates a new TEST1 using the% given property value pairs. Unrecognized properties are passed via% varargin to test1_OpeningFcn. This calling syntax produces a% warning when there is an existing singleton*.%% TEST1('CALLBACK') and TEST1('CALLBACK',hObject,...) call the% local function named CALLBACK in TEST1.M with the given input% arguments.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help test1% Last Modified by GUIDE v2.5 09-Mar-2009 14:24:57% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @test1_OpeningFcn, ... 'gui_OutputFcn', @test1_OutputFcn, ... 'gui_LayoutFcn', [], ... 'gui_Callback', []);if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1});endif nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});else gui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before test1 is made visible.function test1_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin unrecognized PropertyName/PropertyValue pairs from the% command line (see VARARGIN)% Choose default command line output for test1handles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes test1 wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line.function varargout = test1_OutputFcn(hObject, eventdata, handles)% varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)creat=findobj(gcf,'Tag','radiobutton1');processing=findobj(gcf,'Tag','radiobutton2');global TT=str2double(get(handles.edit1,'string'));global BB=str2double(get(handles.edit2,'string'));if(get(creat,'Value')==get(creat,'Max'))K=B/T; %频率调制斜率Fs=5*B;Ts=1/Fs; %计算机仿真的采样频率和采样周期N=T/Ts; %采样点数t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2); %产生线性调频信号axes(handles.axes1)handles.axes1_handle=gca;plot(t*1e6,real(St));xlabel('\fontsize{9}时间(us)');title('\fontsize{9}LFM脉冲的时域波形');grid on;axis tight;freq=linspace(-Fs/2,Fs/2,N);% freq=linspace(0,Fs,N);axes(handles.axes2)handles.axes2_handle=gca;% plot(freq*1e-6,abs(fft(St)));plot(freq*1e-6,fftshift(abs(fft(St))));xlabel('\fontsize{9}频率(MHz)');title('\fontsize{9}LFM脉冲的幅频特性');grid on;axis tight;elseif(get(processing,'Value')==get(processing,'Max')) global RminRmin=str2double(get(handles.edit3,'string'));global RmaxRmax=str2double(get(handles.edit4,'string'));global RR=str2num(get(handles.edit5,'string'));global RCSRCS=str2num(get(handles.edit6,'string'));global winidwinid=str2double(get(handles.edit7,'string'));% T=10e-6; %pulse duration 10us% B=30e6; %chirp frequency modulation bandwidth 30MHz% Rmin=10000;Rmax=15000; %range bin% R=[10500,11000,12000,12008,13000,13002]; %position of ideal point targets% RCS=[1 1 1 1 1 1]; %radar cross section% winid=2;%=========================================================%%ParameterC=3e8; %propagation speedK=B/T; %chirp slopeRwid=Rmax-Rmin; %receive window in meterTwid=2*Rwid/C; %receive window in secondFs=5*B;Ts=1/Fs; %sampling frequency and sampling spacingNwid=ceil(Twid/Ts); %receive window in number%=================================================================%determine proper windowif(winid==0.) win(1:Nwid)=1.;endif(winid==1.) win=hamming(Nwid)';endif(winid==2.) win=chebwin(Nwid,60)';endnosewite=findobj(gcf,'Tag','checkbox1'); if(get(nosewite,'Value')==get(nosewite,'Max')) nose=randn(1,Nwid); else nose=zeros(1,Nwid); end%==================================================================%%Gnerate the echo t=linspace(2*Rmin/C,2*Rmax/C,Nwid); %receive window%open window when t=2*Rmin/C%close window when t=2*Rmax/C M=length(R); %number of targets td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt=RCS*(exp(j*pi*K*td.^2).*(abs(td)<T/2))+nose;%radar echo from point targets Srt=Srt.*win;%=========================================================%%Digtal processing of pulse compression radar using FFT and IFFTNchirp=ceil(T/Ts); %pulse duration in numberNfft=2^nextpow2(Nwid+Nchirp-1); %number needed to compute linear %convolution using FFT algorithmSrw=fft(Srt,Nfft); %fft of radar echot0=linspace(0,T,Nchirp); St=exp(j*pi*K*t0.^2); %chirp signal Sw=fft(St,Nfft); %fft of chirp signalSot=ifft(Srw.*conj(Sw)); %signal after pulse compression%=========================================================N0=1;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);%figure% subplot(211)axes(handles.axes1)handles.axes1_handle=gca;plot(t*1e6,real(Srt));axis tight;xlabel('Time in u sec');ylabel('Amplitude')title('Radar echo without compression');% subplot(212)axes(handles.axes2)handles.axes2_handle=gca;plot(t*C/2,Z)% axis([11900,12100,-60,0]);axis([Rmin,Rmax,-60,0]);xlabel('Range in meters');ylabel('Amplitude in dB')title('Radar echo after compression');end% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)close
3 仿真结果
4 参考文献
[1]魏选平, 姚敏立, 张周生,等. 脉冲压缩雷达原理及其MATLAB仿真[J]. 电子产品可靠性与环境试验, 2008, 26(4):3.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。