【Elasticsearch 技术分享】—— 十张图带大家看懂 ES 原理 !明白为什么说:ES 是准实时的!

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 说到 Elasticsearch ,其中最明显的一个特点就是 near real-time 准实时 —— 当文档存储在Elasticsearch中时,将在1秒内以几乎实时的方式对其进行索引和完全搜索。那为什么说 ES 是准实时的呢?

网络异常,图片无法展示
|


前言


说到 Elasticsearch ,其中最明显的一个特点就是 near real-time 准实时 —— 当文档存储在Elasticsearch中时,将在1秒内以几乎实时的方式对其进行索引和完全搜索。那为什么说 ES 是准实时的呢?


Lucene 和 ES

Lucene

Lucene 是 Elasticsearch所基于的 Java 库,它引入了按段搜索的概念。

Segment: 也叫段,类似于倒排索引,相当于一个数据集。

Commit point:提交点,记录着所有已知的段。

Lucene index: “a collection of segments plus a commit point”。由一堆 Segment 的集合加上一个提交点组成。

对于一个 Lucene index 的组成,如下图所示。

image.png


Elasticsearch


一个 Elasticsearch Index 由一个或者多个 shard (分片) 组成。

image.png


而 Lucene 中的 Lucene index 相当于 ES 的一个 shard。

image.png


写入过程


写入过程 1.0 (不完善)

  1. 不断将 Document 写入到 In-memory buffer (内存缓冲区)。
  2. 当满足一定条件后内存缓冲区中的 Documents 刷新到磁盘。
  3. 生成新的 segment 以及一个 Commit point 提交点。
  4. 这个 segment 就可以像其他 segment 一样被读取了。

画图如下:

image.png

将文件刷新到磁盘是非常耗费资源的,而且在内存缓冲区和磁盘中间存在一个高速缓存(cache),一旦文件进入到 cache 就可以像磁盘上的 segment 一样被读取了。


写入过程 2.0

  1. 不断将 Document 写入到 In-memory buffer (内存缓冲区)。
  2. 当满足一定条件后内存缓冲区中的 Documents 刷新到 高速缓存(cache)。
  3. 生成新的 segment ,这个 segment 还在 cache 中。
  4. 这时候还没有 commit ,但是已经可以被读取了。

画图如下:

image.png

数据从 buffer 到 cache 的过程是定期每秒刷新一次。所以新写入的 Document 最慢 1 秒就可以在 cache 中被搜索到。

而 Document 从 buffer 到 cache 的过程叫做 ?refresh 。一般是 1 秒刷新一次,不需要进行额外修改。当然,如果有修改的需要,可以参考文末的相关资料。这也就是为什么说 Elasticsearch 是准实时的。

使文档立即可见:

PUT /test/_doc/1?refresh
{"test": "test"}
// 或者
PUT /test/_doc/2?refresh=true
{"test": "test"}
复制代码


Translog 事务日志

此处可以联想 Mysql 的 binlog, ES 中也存在一个 translog 用来失败恢复。

  1. Document 不断写入到 In-memory buffer,此时也会追加 translog。
  2. 当 buffer 中的数据每秒 refresh 到 cache 中时,translog 并没有进入到刷新到磁盘,是持续追加的。
  3. translog 每隔 5s 会 fsync 到磁盘。
  4. translog 会继续累加变得越来越大,当 translog 大到一定程度或者每隔一段时间,会执行 flush。

image.png


flush 操作会分为以下几步执行:

  1. buffer 被清空。
  2. 记录 commit point。
  3. cache 内的 segment 被 fsync 刷新到磁盘。
  4. translog 被删除。

image.png


值得注意的是:

  1. translog 每 5s 刷新一次磁盘,所以故障重启,可能会丢失 5s 的数据。
  2. translog 执行 flush 操作,默认 30 分钟一次,或者 translog 太大 也会执行。

手动执行flush:

POST /my-index-000001/_flush
复制代码


删除和更新

segment 不可改变,所以 docment 并不能从之前的 segment 中移除或更新。

所以每次 commit, 生成 commit point 时,会有一个 .del 文件,里面会列出被删除的 document(逻辑删除)。 而查询时,获取到的结果在返回前会经过 .del 过滤。

更新时,也会标记旧的 docment 被删除,写入到 .del 文件,同时会写入一个新的文件。此时查询会查询到两个版本的数据,但在返回前会被移除掉一个。

image.png


segment 合并

每 1s 执行一次 refresh 都会将内存中的数据创建一个 segment。

segment 数目太多会带来较大的麻烦。 每一个 segment 都会消耗文件句柄、内存和cpu运行周期。更重要的是,每个搜索请求都必须轮流检查每个 segment ;所以 segment 越多,搜索也就越慢。

在 ES 后台会有一个线程进行 segment 合并。

  1. refresh操作会创建新的 segment 并打开以供搜索使用。
  2. 合并进程选择一小部分大小相似的 segment,并且在后台将它们合并到更大的 segment 中。这并不会中断索引和搜索。
  3. 当合并结束,老的 segment 被删除 说明合并完成时的活动:
  1. 新的 segment 被刷新(flush)到了磁盘。 写入一个包含新 segment 且排除旧的和较小的 segment的新 commit point。
  2. 新的 segment 被打开用来搜索。
  3. 老的 segment 被删除。

image.png

物理删除:

在 segment merge 这块,那些被逻辑删除的 document 才会被真正的物理删除。

总结


主要介绍了内部写入和删除的过程,需要了解 refresh、fsync、flush、.del、segment merge 等名词的具体含义。

完整画图如下:

image.png

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
目录
相关文章
|
数据可视化 Java Windows
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
本文介绍了如何在Windows环境下安装Elasticsearch(ES)、Elasticsearch Head可视化插件和Kibana,以及如何配置ES的跨域问题,确保Kibana能够连接到ES集群,并提供了安装过程中可能遇到的问题及其解决方案。
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
|
7月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
3330 0
|
12月前
|
存储 缓存 监控
极致 ElasticSearch 调优,让你的ES 狂飙100倍!
尼恩分享了一篇关于提升Elasticsearch集群的整体性能和稳定性措施的文章。他从硬件、系统、JVM、集群、索引和查询等多个层面对ES的性能优化进行分析,帮助读者提升技术水平。
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
1216 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
306 0
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
274 0
|
8月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1351 64
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
460 5
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo