安卓 View 的工作流程

简介: View 的工作流程主要是指 measure、layout、draw 这三大流程,即测量、布局和绘制,其中 measure 确定 View 的测量宽/高,layout 确定 View 的最终宽/高和四个顶点的位置,而 draw 则将View绘制到屏幕上。measure 的过程measure过程要分情况来看,如果只是一个原始的View,那么通过measure方法就完成了其测量过程,如果是一个ViewGroup,除了完成自己的测量过程外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个流程,下面针对这两种情况分别讨论。

View 的工作流程主要是指 measure、layout、draw 这三大流程,即测量、布局和绘制,其中 measure 确定 View 的测量宽/高,layout 确定 View 的最终宽/高和四个顶点的位置,而 draw 则将View绘制到屏幕上。


measure 的过程



measure过程要分情况来看,如果只是一个原始的View,那么通过measure方法就完成了其测量过程,如果是一个ViewGroup,除了完成自己的测量过程外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个流程,下面针对这两种情况分别讨论。


  1. View的measure过程View的measure过程由其measure方法来完成,measure方法是一个final类型的方法,这意味着子类不能重写此方法,在View的measure方法中会去调用View的onMeasure方法,因此只需要看onMeasure的实现即可,View的onMeasure方法如下所示。


/**
     * Measure the view and its content to determine the measured width and the
     * measured height. This method is invoked by {@link #measure(int, int)} and
     * should be overridden by subclasses to provide accurate and efficient
     * measurement of their contents.
     * </p>
     *
     * <p>
     * If this method is overridden, it is the subclass's responsibility to make
     * sure the measured height and width are at least the view's minimum height
     * and width ({@link #getSuggestedMinimumHeight()} and
     * {@link #getSuggestedMinimumWidth()}).
     * </p>
     *
     * @param widthMeasureSpec horizontal space requirements as imposed by the parent.
     *                         The requirements are encoded with
     *                         {@link android.view.View.MeasureSpec}.
     * @param heightMeasureSpec vertical space requirements as imposed by the parent.
     *                         The requirements are encoded with
     *                         {@link android.view.View.MeasureSpec}.
     *
     */
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
    }


setMeasuredDimension方法会设置View宽/高的测量值,因此我们只需要看View.getDefaultSize这个静态方法即可:

/**
     * Utility to return a default size. Uses the supplied size if the
     * MeasureSpec imposed no constraints. Will get larger if allowed
     * by the MeasureSpec.
     *
     * @param size Default size for this view
     * @param measureSpec Constraints imposed by the parent
     * @return The size this view should be.
     */
    public static int getDefaultSize(int size, int measureSpec) {
        int result = size;
        int specMode = MeasureSpec.getMode(measureSpec);
        int specSize = MeasureSpec.getSize(measureSpec);
        switch (specMode) {
        case MeasureSpec.UNSPECIFIED:
            result = size;
            break;
        case MeasureSpec.AT_MOST:
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        }
        return result;
    }


可以看出,getDefaultSize这个方法的逻辑很简单,对于我们来说,我们只需要看AT_MOST和.EXACTLY这两种情况。简单地理解,其实getDefaultSize返回的大小就是measureSpec中的specSize,而这个specSize就是View测量后的大小,这里多次提到测量后的大小,是因为View最终的大小是在layout阶段确定的,所以这里必须要加以区分,但是几乎所有情况下View的测量大小和最终大小是相等的。


至于UNSPECIFIED这种情况,一般用于系统内部的测量过程,在这种情况下,View的大小为getDefaultSize的第一个参数size,即宽/高分别为getSuggestedMinimumWidth和getSuggestedMinimumHeight这两个方法的返回值,看一下它们的源码:

/**
     * Returns the suggested minimum width that the view should use. This
     * returns the maximum of the view's minimum width
     * and the background's minimum width
     *  ({@link android.graphics.drawable.Drawable#getMinimumWidth()}).
     * <p>
     * When being used in {@link #onMeasure(int, int)}, the caller should still
     * ensure the returned width is within the requirements of the parent.
     *
     * @return The suggested minimum width of the view.
     */
    protected int getSuggestedMinimumWidth() {
        return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
    }


这里只分析getSuggestedMinimumWidth方法的实现,getSuggestedMinimumHeight和它的实现原理是一样的。从getSuggestedMinimumWidth的代码可以看出,如果View没有设置背景,那么View的宽度为mMinWidth,而mMinWidth对应于


android:minWidth这个属性所指定的值,因此View的宽度即为android:minWidth属性所指定的值。这个属性如果不指定,那么mMinWidth则默认为0;如果View指定了背景,则View的宽度为max(mMinWidth,mBackground.getMinimumWidth())。


mMinWidth的含义我们已经知道了,那么mBackground.getMinimumWidth()是什么呢?我们看一下Drawable的getMinimumWidth方法,如下所示。

public abstract class Drawable {
    ...
    /**
     * Returns the minimum width suggested by this Drawable. If a View uses this
     * Drawable as a background, it is suggested that the View use at least this
     * value for its width. (There will be some scenarios where this will not be
     * possible.) This value should INCLUDE any padding.
     *
     * @return The minimum width suggested by this Drawable. If this Drawable
     *         doesn't have a suggested minimum width, 0 is returned.
     */
    public int getMinimumWidth() {
        final int intrinsicWidth = getIntrinsicWidth();
        return intrinsicWidth > 0 ? intrinsicWidth : 0;
    }
    ...
}


可以看出,getMinimumWidth返回的就是Drawable的原始宽度,前提是这个Drawable有原始宽度,否则就返回0。那么Drawable在什么情况下有原始宽度呢?这里先举个例子说明一下,ShapeDrawable无原始宽/高,而BitmapDrawable有原始宽/高(图片的尺寸),详细内容会在第6章进行介绍。


这里再总结一下getSuggestedMinimumWidth的逻辑:如果View没有设置背景,那么返回android:minWidth这个属性所指定的值,这个值可以为0;如果View设置了背景,则返回android:minWidth和背景的最小宽度这两者中的最大值,getSuggestedMinimumWidth和getSuggestedMinimumHeight的返回值就是View在UNSPECIFIED情况下的测量宽/高。


从getDefaultSize方法的实现来看,View的宽/高由specSize决定,所以我们可以得出如下结论:直接继承View的自定义控件需要重写onMeasure方法并设置wrap_content时的自身大小,否则在布局中使用wrap_content就相当于使用match_parent。为什么呢?这个原因需要结合上述代码和表1才能更好地理解。从上述代码中我们知道,如果View在布局中使用wrap_content,那么它的specMode是AT_MOST模式,在这种模式下,它的宽/高等于specSize;查表4-1可知,这种情况下View的specSize是parentSize,而parentSize是父容器中目前可以使用的大小,也就是父容器当前剩余的空间大小。很显然,View的宽/高就等于父容器当前剩余的空间大小,这种效果和在布局中使用match_parent完全一致。如何解决这个问题呢?也很简单,代码如下所示。



image.png


表1 普通View的MeasureSpec的创建规则

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec){
      super.onMeasure(widthMeasureSpec, heightMeasureSpec);             
      int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec):
      int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec):
      int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec):
      int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec):
      if(widthSpecMode == MeasureSpec.AT_MOST && heightSpecMode == MeasureSpec.AT_MOST){
            setMeasuredDimension(mWidth,mHeight);                    
      } else if (widthSpecMode == AT_MOST) {
            setMeasureDimension(mWidth,heightSpecSize);
      } else if (heightSpecMode == AT_MOST){
            setMeasureDimension(widthSpecSize,mHeight);
      }
}


在上面的代码中,我们只需要给View指定一个默认的内部宽/高(mWidth和mHeight),并在wrap_content时设置此宽/高即可。对于非wrap_content情形,我们沿用系统的测量值即可,至于这个默认的内部宽/高的大小如何指定,这个没有固定的依据,根据需要灵活指定即可。如果查看TextView、ImageView等的源码就可以知道,针对wrap_content情形,它们的onMeasure方法均做了特殊处理,读者可以自行查看它们的源码。

2. ViewGroup的measure过程


对于ViewGroup来说,除了完成自己的measure过程以外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个过程。和View不同的是,ViewGroup是一个抽象类,因此它没有重写View的onMeasure方法,但是它提供了一个叫measureChildren的方法,如下所示。


/**
     * Ask all of the children of this view to measure themselves, taking into
     * account both the MeasureSpec requirements for this view and its padding.
     * We skip children that are in the GONE state The heavy lifting is done in
     * getChildMeasureSpec.
     *
     * @param widthMeasureSpec The width requirements for this view
     * @param heightMeasureSpec The height requirements for this view
     */
    protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
        final int size = mChildrenCount;
        final View[] children = mChildren;
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
    }


从上述代码来看,ViewGroup在measure时,会对每一个子元素进行measure,ViewGroup.measureChild这个方法的实现也很好理解,如下所示。

/**
     * Ask one of the children of this view to measure itself, taking into
     * account both the MeasureSpec requirements for this view and its padding.
     * The heavy lifting is done in getChildMeasureSpec.
     *
     * @param child The child to measure
     * @param parentWidthMeasureSpec The width requirements for this view
     * @param parentHeightMeasureSpec The height requirements for this view
     */
    protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        final LayoutParams lp = child.getLayoutParams();
        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);
        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }


很显然,measureChild的思想就是取出子元素的LayoutParams,然后再通过getChildMeasureSpec来创建子元素的MeasureSpec,接着将MeasureSpec直接传递给View的measure方法来进行测量。getChildMeasureSpec的工作过程已经在上面进行了详细分析,通过表1可以更清楚地了解它的逻辑。我们知道,ViewGroup并没有定义其测量的具体过程,这是因为ViewGroup是一个抽象类,其测量过程的onMeasure方法需要各个子类去具体实现,比如LinearLayout、RelativeLayout等,为什么ViewGroup不像View一样对其onMeasure方法做统一的实现呢?那是因为不同的ViewGroup子类有不同的布局特性,这导致它们的测量细节各不相同,比如LinearLayout和RelativeLayout这两者的布局特性显然不同,因此ViewGroup无法做统一实现。下面就通过LinearLayout的onMeasure方法来分析ViewGroup的measure过程,其他Layout类型读者可以自行分析。


首先来看LinearLayout的onMeasure方法,如下所示。

@Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        if (mOrientation == VERTICAL) {
            measureVertical(widthMeasureSpec, heightMeasureSpec);
        } else {
            measureHorizontal(widthMeasureSpec, heightMeasureSpec);
        }
    }


上述代码很简单,我们选择一个来看一下,比如选择查看竖直布局的LinearLayout的测量过程,即measureVertical方法,measureVertical的源码比较长,下面只描述其大概逻辑,首先看一段代码:


image.png


从上面这段代码可以看出,系统会遍历子元素并对每个子元素执行measureChildBeforeLayout方法,这个方法内部会调用子元素的measure方法,这样各个子元素就开始依次进入measure过程,并且系统会通过mTotalLength这个变量来存储LinearLayout在竖直方向的初步高度。每测量一个子元素,mTotalLength就会增加,增加的部分主要包括了子元素的高度以及子元素在竖直方向上的margin等。当子元素测量完毕后,LinearLayout会测量自己的大小,源码如下所示。

// Add in our padding
        mTotalLength += mPaddingTop + mPaddingBottom;
        int heightSize = mTotalLength;
        // Check against our minimum height
        heightSize = Math.max(heightSize, getSuggestedMinimumHeight());
        // Reconcile our calculated size with the heightMeasureSpec
        int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
        heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
        ...
        setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
        heightSizeAndState);


这里对上述代码进行说明,当子元素测量完毕后,LinearLayout会根据子元素的情况来测量自己的大小。针对竖直的LinearLayout而言,它在水平方向的测量过程遵循View的测量过程,在竖直方向的测量过程则和View有所不同。具体来说是指,如果它的布局中高度采用的是match_parent或者具体数值,那么它的测量过程和View一致,即高度为specSize;如果它的布局中高度采用的是wrap_content,那么它的高度是所有子元素所占用的高度总和,但是仍然不能超过它的父容器的剩余空间,当然它的最终高度还需要考虑其在竖直方向的padding,这个过程可以进一步参看如下源码:

/**
     * Utility to reconcile a desired size and state, with constraints imposed
     * by a MeasureSpec. Will take the desired size, unless a different size
     * is imposed by the constraints. The returned value is a compound integer,
     * with the resolved size in the {@link #MEASURED_SIZE_MASK} bits and
     * optionally the bit {@link #MEASURED_STATE_TOO_SMALL} set if the
     * resulting size is smaller than the size the view wants to be.
     *
     * @param size How big the view wants to be.
     * @param measureSpec Constraints imposed by the parent.
     * @param childMeasuredState Size information bit mask for the view's
     *                           children.
     * @return Size information bit mask as defined by
     *         {@link #MEASURED_SIZE_MASK} and
     *         {@link #MEASURED_STATE_TOO_SMALL}.
     */
    public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
        final int specMode = MeasureSpec.getMode(measureSpec);
        final int specSize = MeasureSpec.getSize(measureSpec);
        final int result;
        switch (specMode) {
            case MeasureSpec.AT_MOST:
                if (specSize < size) {
                    result = specSize | MEASURED_STATE_TOO_SMALL;
                } else {
                    result = size;
                }
                break;
            case MeasureSpec.EXACTLY:
                result = specSize;
                break;
            case MeasureSpec.UNSPECIFIED:
            default:
                result = size;
        }
        return result | (childMeasuredState & MEASURED_STATE_MASK);
    }


View的measure过程是三大流程中最复杂的一个,measure完成以后,通过getMeasuredWidth/Height方法就可以正确地获取到View的测量宽/高。需要注意的是,在某些极端情况下,系统可能需要多次measure才能确定最终的测量宽/高,在这种情形下,在onMeasure方法中拿到的测量宽/高很可能是不准确的。一个比较好的习惯是在onLayout方法中去获取View的测量宽/高或者最终宽/高


上面已经对View的measure过程进行了详细的分析,现在考虑一种情况,比如我们想在Activity已启动的时候就做一件任务,但是这一件任务需要获取某个View的宽/高。读者可能会说,这很简单啊,在onCreate或者onResume里面去获取这个View的宽/高不就行了?读者可以自行试一下,实际上在onCreate、onStart、onResume中均无法正确得到某个View的宽/高信息,这是因为View的measure过程和Activity的生命周期方法不是同步执行的,因此无法保证Activity执行了onCreate、onStart、onResume时某个View已经测量完毕了,如果View还没有测量完毕,那么获得的宽/高就是0。有没有什么方法能解决这个问题呢?答案是有的,这里给出四种方法来解决这个问题:


  1. Activity/View#onWindowFocusChangedonWindowFocusChanged这个方法的含义是:View已经初始化完毕了,宽/高已经准备好了,这个时候去获取宽/高是没问题的。需要注意的是,onWindowFocusChanged会被调用多次,当Activity的窗口得到焦点和失去焦点时均会被调用一次。具体来说,当Activity继续执行和暂停执行时,onWindowFocusChanged均会被调用,如果频繁地进行onResumeonPause,那么onWindowFocusChanged也会被频繁地调用。典型代码如下:

public void onWindowFocusChanged(boolean hasFocus){
        super.onWindowFocusChanged(hasFocus);
        if(hasFocus){
            int width = view.getMeasureWidth();
            int height = view.getMeasureHeight();
        }
    }


  1. view.post(runnable)
    通过post可以将一个runnable投递到消息队列的尾部,然后等待Looper调用此runnable的时候,View也已经初始化好了。典型代码如下:

protected void onStart(){
        super.onStart();
        view.post(new Runnable(){
            @override
            public void run(){
                int width = view.getMeasuredWidth();
                int height = view.getMeasuredHeight();
            }
        });
    }


  1. ViewTreeObserver。使用 ViewTreeObserver 的众多回调可以完成这个功能,比如使用OnGlobalLayoutListener这个接口,当View树的状态发生改变或者View树内部的View的可见性发现改变时,onGlobalLayout 方法将被回调,因此这是获取View的宽/高一个很好的时机。需要注意的是,伴随着View树的状态改变等,onGlobalLayout会被调用多次。典型代码如下:

protected void onStart(){
        super.onStart();
        ViewTreeObserver observer = view.getViewTreeObserver();
        observer.addOnGlobalLayoutListener(new OnGlobalLayoutListener(){
            @SuppressWarnings("deprecation");
            @override
            public void onGlobalLayout(){
                view.getViewTreeObserver().removeGlobalOnLayoutListener(this);
                int width = view.getMeasuredWidth();
                int height = view.getMeasuredHeight();
            }
        });
    }


  1. view.measure(int widthMeasureSpec,int heightMea-sureSpec)。通过手动对View进行measure来得到View的宽/高。这种方法比较复杂,这里要分情况处理,根据View的LayoutParams来分:


  • match_parent直接放弃,无法measure出具体的宽/高。原因很简单,根据View的measure过程,如表1所示,构造此种MeasureSpec需要知道parentSize,即父容器的剩余空间,而这个时候我们无法知道parentSize的大小,所以理论上不可能测量出View的大小。


  • 具体的数值(dp/px)比如宽/高都是100px,如下measure:

int widthMeasureSpec = View.MeasureSpec.makeMeasureSpec(100, View.MeasureSpec.EXACTLY);
int heightMeasureSpec = View.MeasureSpec.makeMeasureSpec(100, View.MeasureSpec.EXACTLY);
view.measure(widthMeasureSpec, heightMeasureSpec);


  • wrap_content如下measure:

int widthMeasureSpec = View.MeasureSpec.makeMeasureSpec((1<<30)-1, View.MeasureSpec.AT_MOST);
int heightMeasureSpec = View.MeasureSpec.makeMeasureSpec((1<<30)-1, View.MeasureSpec.AT_MOST);
v_view1.measure(widthMeasureSpec, heightMeasureSpec);


注意到(1 << 30)-1,通过分析MeasureSpec的实现可以知道,View的尺寸使用30位二进制表示,也就是说最大是30个1(即2^30 – 1),也就是(1 << 30) – 1,在最大化模式下,我们用View理论上能支持的最大值去构造MeasureSpec是合理的。


关于View的measure,网络上有两个错误的用法。为什么说是错误的,首先其违背了系统的内部实现规范(因为无法通过错误的MeasureSpec去得出合法的SpecMode,从而导致measure过程出错),其次不能保证一定能measure出正确的结果。


  • 第一种错误用法:

int widthMeasureSpec = MeasureSpec.makeMeasureSpec(-1, MeasureSpec.UNSPECIFIED);
int heightMeasureSpec = MeasureSpec.makeMeasureSpec(-1, MeasureSpec.UNSPECIFIED);
view.measure(widthMeasureSpec, heightMeasureSpec);


  • 第二种错误用法

view.measure(LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT)


layout 的过程



Layout 的作用是ViewGroup用来确定子元素的位置,当ViewGroup的位置被确定后,它在onLayout中会遍历所有的子元素并调用其layout方法,在layout方法中onLayout方法又会被调用。Layout过程和measure过程相比就简单多了,layout方法确定View本身的位置,而onLayout方法则会确定所有子元素的位置,先看View的layout方法。


draw 的过程



Draw过程就比较简单了,它的作用是将View绘制到屏幕上面。View的绘制过程遵循如下几步:


  1. 绘制背景background.draw(canvas)。


  1. 绘制自己(onDraw)。


  1. 绘制children(dispatchDraw)。


  1. 绘制装饰(onDrawScrollBars)。


这一点通过draw方法的源码可以明显看出来,如下所示。


参考书目



目录
相关文章
|
7天前
|
消息中间件 Android开发 索引
Android面试高频知识点(4) 详解Activity的启动流程
讲解Activity的启动流程了,Activity的启动流程相对复杂一下,涉及到了Activity中的生命周期方法,涉及到了Android体系的CS模式,涉及到了Android中进程通讯Binder机制等等, 首先介绍一下Activity,这里引用一下Android guide中对Activity的介绍:
24 4
|
23天前
|
缓存 搜索推荐 Android开发
安卓应用开发中的自定义View组件实践
【9月更文挑战第10天】在安卓开发领域,自定义View是提升用户体验和实现界面个性化的重要手段。本文将通过一个实际案例,展示如何在安卓项目中创建和使用自定义View组件,包括设计思路、实现步骤以及可能遇到的问题和解决方案。文章不仅提供了代码示例,还深入探讨了自定义View的性能优化技巧,旨在帮助开发者更好地掌握这一技能。
|
25天前
|
Android开发
Android中SurfaceView的双缓冲机制和普通View叠加问题解决办法
本文介绍了 Android 平台上的 SurfaceView,这是一种高效的图形渲染控件,尤其适用于视频播放、游戏和图形动画等场景。文章详细解释了其双缓冲机制,该机制通过前后缓冲区交换来减少图像闪烁,提升视觉体验。然而,SurfaceView 与普通 View 叠加时可能存在 Z-Order 不一致、同步问题及混合渲染难题。文中提供了使用 TextureView、调整 Z-Order 和创建自定义组合控件等多种解决方案。
56 9
|
28天前
|
Android开发 容器
Android经典实战之如何获取View和ViewGroup的中心点
本文介绍了在Android中如何获取`View`和`ViewGroup`的中心点坐标,包括计算相对坐标和屏幕上的绝对坐标,并提供了示例代码。特别注意在视图未完成测量时可能出现的宽高为0的问题及解决方案。
26 7
|
7天前
|
Android开发 开发者
Android面试之Activity启动流程简述
每个Android开发者都熟悉的Activity,但你是否了解它的启动流程呢?本文将带你深入了解。启动流程涉及四个关键角色:Launcher进程、SystemServer的AMS、应用程序的ActivityThread及Zygote进程。核心在于AMS与ActivityThread间的通信。文章详细解析了从Launcher启动Activity的过程,包括通过AIDL获取AMS、Zygote进程启动以及ActivityThread与AMS的通信机制。接着介绍了如何创建Application及Activity的具体步骤。整体流程清晰明了,帮助你更深入理解Activity的工作原理。
16 0
|
2月前
|
XML 搜索推荐 Android开发
安卓开发中的自定义View组件实践
【8月更文挑战第30天】探索Android世界,自定义View是提升应用界面的关键。本文以简洁的语言带你了解如何创建自定义View,从基础到高级技巧,一步步打造个性化的UI组件。
|
2月前
|
Android开发
我的Android进阶修炼:安卓启动流程之init(1)
本文深入分析了Android系统中的init进程,包括其源码结构、主要功能以及启动流程的详细注解,旨在帮助读者理解init作为用户空间的1号进程在Android启动过程中的关键作用。
31 1
|
2月前
|
API Android开发 开发者
Android经典实战之使用ViewCompat来处理View兼容性问题
本文介绍Android中的`ViewCompat`工具类,它是AndroidX库核心部分的重要兼容性组件,确保在不同Android版本间处理视图的一致性。文章列举了设置透明度、旋转、缩放、平移等功能,并提供了背景色、动画及用户交互等实用示例。通过`ViewCompat`,开发者可轻松实现跨版本视图操作,增强应用兼容性。
93 5
|
2月前
|
XML 前端开发 Android开发
Android面试高频知识点(3) 详解Android View的绘制流程
View的绘制和事件处理是两个重要的主题,上一篇《图解 Android事件分发机制》已经把事件的分发机制讲得比较详细了,这一篇是针对View的绘制,View的绘制如果你有所了解,基本分为measure、layout、draw 过程,其中比较难理解就是measure过程,所以本篇文章大幅笔地分析measure过程,相对讲得比较详细,文章也比较长,如果你对View的绘制还不是很懂,对measure过程掌握得不是很深刻,那么耐心点,看完这篇文章,相信你会有所收获的。
78 2
|
3月前
|
Java Android开发
android 设置系统时间的流程
android 设置系统时间的方法
250 2
下一篇
无影云桌面