大数据入门与实战-Hive操作与SQL 查询

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据入门与实战-Hive操作与SQL 查询

Hive的SQL基本上和我们原先的MYSQL的SQL查询效果差不多,下面是一些实例:


基本查询


  • 创建数据库 create databases hivedb;
    我们可以看到会在/user/hive/warehouse 下面出现hivedb.db文件


30.png


  • 使用指定数据库 use hivedb;
  • 创建表create table test(id int,name string);


31.png

  • 删除表drop table test;


高级操作


  • hive中表的概念与关系型数据库中表的概念非常类似
  • hive中每张表都和DFS上/user/hive/warehouse(默认。此目录可以在${HIVE_HOME/conf/hive-sire.xml中设置})中的一个目录相关联。
  • 创建表 :


CREATE TABLE IF NOT EXISTS t_customer(id int,name string,age int,address string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;


32.png


  • 导入本地数据:
    我们将本地的txt文件中的数据导入表中

    33.png


LOAD DATA LOCAL INPATH '/opt/datas/customer.txt' OVERWRITE INTO TABLE T_CUSTOMER;


34.png


  • 导入Hadoop数据
    我们先将customer.txt上传到hdfs上


hdfs dfs -mkdir /user/datas
 hdfs dfs -put /opt/datas/customer.txt /user/datas


然后将HDFS数据导入hive


LOAD DATA INPATH '/user/datas/customer.txt' INTO TABLE T_CUSTOMER;


35.png


我们可以看到源文件已经删除


36.png



但是在warehouse会保留备份



37.png


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
15天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
52 9
|
1月前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
133 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
2月前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
42 8
|
2月前
|
SQL 算法 大数据
为什么大数据平台会回归SQL
在大数据领域,尽管非结构化数据占据了大数据平台80%以上的存储空间,结构化数据分析依然是核心任务。SQL因其广泛的应用基础和易于上手的特点成为大数据处理的主要语言,各大厂商纷纷支持SQL以提高市场竞争力。然而,SQL在处理复杂计算时表现出的性能和开发效率低下问题日益凸显,如难以充分利用现代硬件能力、复杂SQL优化困难等。为了解决这些问题,出现了像SPL这样的开源计算引擎,它通过提供更高效的开发体验和计算性能,以及对多种数据源的支持,为大数据处理带来了新的解决方案。
|
2月前
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
98 3
|
2月前
|
SQL 安全 PHP
PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全
本文深入探讨了PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全。
70 4
|
2月前
|
SQL 监控 关系型数据库
SQL语句当前及历史信息查询-performance schema的使用
本文介绍了如何使用MySQL的Performance Schema来获取SQL语句的当前和历史执行信息。Performance Schema默认在MySQL 8.0中启用,可以通过查询相关表来获取详细的SQL执行信息,包括当前执行的SQL、历史执行记录和统计汇总信息,从而快速定位和解决性能瓶颈。
|
2月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
63 0
|
4月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
6月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
144 13
下一篇
开通oss服务