CNN网络实战技巧

简介: CNN网络实战技巧

学习目标


  • 目标
  • 了解迁移学习以及技巧


  • 应用


我们来看一个个问题如果我们要做一个具体场景的计算机视觉任务,那么从头开始训练一个网络是合适的选择吗?怎么样才能避免浪费过多的计算时间?


3.5.1 迁移学习(Transfer Learning)



3.5.1.1 介绍


定义


  • 迁移学习就是利用数据、任务或模型之间的相似性,将在旧的领域学习过或训练好的模型,应用于新的领域这样的一个过程。
  • 两个任务的输入属于同一性质:要么同是图像、要么同是语音或其他


迁移学习到底在什么情况下使用呢?有两个方面需要我们考虑的


1、当我们有海量的数据资源时,可以不需要迁移学习,机器学习系统很容易从海量数据中学习到一个鲁棒性很强的模型。但通常情况下,我们需要研究的领域可获得的数据极为有限,在少量的训练样本上精度极高,但是泛化效果极差。


2、训练成本,很少去从头开始训练一整个深度卷积网络,从头开始训练一个卷积网络通常需要较长时间且依赖于强大的 GPU 计算资源。


3.5.1.2 方法


  • 最常见的称呼叫做fine tuning,即微调
  • 已训练好的模型,称之为Pre-trained model


通常我们需要加载以训练好的模型,这些可以是一些机构或者公司在ImageNet等类似比赛上进行训练过的模型。TensorFlow同样也提供了相关模型地址:https://github.com/tensorflow/models/tree/master/research/slim


下图是其中包含的一些模型:


image.png


3.5.1.3 过程


这里我们举一个例子,假设有两个任务A和B,任务 A 拥有海量的数据资源且已训练好,但并不是我们的目标任务,任务 B 是我们的目标任务。下面的网络模型假设是已训练好的1000个类别模型


image.png


而B任务假设是某个具体场景如250个类别的食物识别,那么该怎么去做


1、建立自己的网络,在A的基础上,修改最后输出结构,并加载A的模型参数

2、根据数据大小调整

  • 如果B任务数据量小,那么我们可以选择将A模型的所有的层进行freeze(可以通过Tensorflow的trainable=False参数实现),而剩下的输出层部分可以选择调整参数训练
  • 如果B任务的数据量大,那么我们可以将A中一半或者大部分的层进行freeze,而剩下部分的layer可以进行新任务数据基础上的微调


目录
相关文章
|
20天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
62 6
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
11天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
15天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
21天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
47 4
|
21天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
39 1
|
22天前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
22天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
26天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章

下一篇
无影云桌面