Flink架构原理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 笔记

(1)Flink应用场景


实际生产的场景,如金融交易数据、互联网订单数据、GPS定位数据、传感器信号、启动终端生产的数据、通讯信号数据等,以及我们熟悉的网络流量监控、服务器产生的日志数据,这些数据最大的共同点就是实时从不同的数据源产生,然后在传输到下游的分析系统。针对这些数据类型主要包括:


实时智能推算

智能推算会根据用户历史的购买行为,通过推荐算法训练模型,预测用户未来可能会购买的物品。


复杂事件处理

对于复杂事件处理,比较常见的案例主要集中在工业领域,例如对车载传感器、机械设备等实时检测,这些业务类型通常数据量都非常大,且对数据处理的时效性要求非常高。通过利用Flink提供的CEP (复杂事件处理)进行事情模式的抽取,同时应用Flink的SQL进行事件数据的转换,在流式系统构建实时规则引擎,一旦事件触发报警规则,便立即将告警结果传输至下游通知系统,从而实现对设备故障快速预警监测,车辆状态监控等。


实时欺诈检测

在金融领域的业务中,尝尝出现各种类型的欺诈行为,例如信用卡欺诈、信贷申请欺诈等。我们可以运用Flink流式计算能够在毫秒内就完成对欺诈判断行为指标的计算,然后实时对交易流水进行规则判断或者模型预测,这样一旦检测出交易存在欺诈嫌疑,则直接对交易进行实时拦截。


实时数据仓库与ETL

结合离线数据仓库,通过利用流计算的优势,补充和优化离线数据仓库。通过有状态的流式计算,高效快速的处理企业需要的统计结果。


流数据分析

实时计算各类数据指标,并利用实时结果及时调整在线系统相关策略,在各类内容投放、无线智能推送领域有大量的应用。


(2)Flink组件架构


1.png

API&Libraries层


作为分布式数据处理框架,Flink同时提供了支撑流计算和批计算的接口,同时在此基础上抽象出不同的应用类型的组件库,如基于流处理的CEP (复杂事件处理库)、SQL&Table库和基于批处理的FlinkML (机器学习库)、Gelly (图形处理库)。API层包括构建流计算应用的DataStream API和批计算应用的DataSet API,两者都提供给用户丰富的数据处理高级API,例如Map、FlatMap操作等,同时也提供比较低级的ProcessFunction API,用户可以直接操作状态和时间等底层数据。


核心层

该层主要负责对上层不同接口提供基础服务,也是F1ink分布式计算框架的核心实现层,支持分布式 Stream作业的执行、JobGraphExecutionGraph到的映射转换、任务调度等。将DataStreamDataSet和转成统一的可执行的 Operator,达到在流式引擎下同时处理批量计算和流式计算的目的。


物理部署层

目前Flink支持多种模式:本地、集群(Standalone/YARN)、云(GCE谷歌/EC2亚马逊)、Kubenetes。


(3)Flink系统架构


Flink 运行时由两种类型的进程组成:一个 JobManager 和一个或者多个 TaskManager。 Flink框架也遵循Master 一 Slave加过设计原则,JobManager为Master节点,TaskManager为Work (salve)节点。所有组件之间的通讯都是借助于Akka框架,包括任务的状态以及Checkpoint触发信息。

2.png


(3.1)Client客户端

Client 不是运行时和程序执行的一部分,而是用于准备数据流并将其发送给 JobManager。之后,客户端可以断开连接(分离模式),或保持连接来接收进程报告(附加模式)。客户端可以作为触发执行 Java/Scala 程序的一部分运行,也可以在命令行进程./bin/flink run …中运行。


可以通过多种方式启动 JobManager 和 TaskManager:直接在机器上作为standalone 集群启动、在容器中启动、或者通过YARN或Mesos等资源框架管理并启动。TaskManager 连接到 JobManagers,宣布自己可用,并被分配工作。


客户端负责将任务提交到集群,与 JobManager构建Akka连接,然后任务提交到 JobManager,通过和 JobManager之间进行交互获取任务执行状态。客户端提交任务可以采用CLI方式或者 Flink通过使用 WebuI提交,也可以在应用程序中指定 JobManager的RPC网络端 ExecutionEnvironmentFlink口构建提交应用。


(3.2)JobManager

JobManager负责整个Flink集群任务的调度以及资源管理,从客户端中获取提交的应用,然后根据集群中TaskManager上TaskSlot的使用情况,为提交的应用分配相应的TaskSlots资源并命令TaskManager启动从客户端中获取的应用。JobManager相当于整个集群的Master节点,且整个集群中有且仅有一个活跃的JobManager,负责整个集群的任务管理和资源管理。JobManager和TaskManager之间通过Actor System进行通信,获取任务执行的情况并通过Actor System将应用的任务执行情况发送给客户端。同时在任务执行过程中,Flink JobManager会触发Checkpoint操作,每个TaskManager节点收到Checkpoint触发指令后,完成Checkpoint操作,所有的Checkpoint协调过程都是在Flink JobManager中完成。当任务完成后,Flink会将任务执行的信息反馈给客户端,并释放掉TaskManager中的资源供下次提交任务的使用。


JobManager 具有许多与协调 Flink 应用程序的分布式执行有关的职责:它决定何时调度下一个 task(或一组 task)、对完成的 task 或执行失败做出反应、协调 checkpoint、并且协调从失败中恢复等等。这个进程由三个不同的组件组成:


ResourceManager

ResourceManager 负责 Flink 集群中的资源提供、回收、分配 - 它管理 task slots,这是 Flink 集群中资源调度的单位(请参考TaskManagers)。Flink 为不同的环境和资源提供者(例如 YARN、Mesos、Kubernetes 和 standalone 部署)实现了对应的 ResourceManager。在 standalone 设置中,ResourceManager 只能分配可用 TaskManager 的 slots,而不能自行启动新的 TaskManager。


Dispatcher

Dispatcher 提供了一个 REST 接口,用来提交 Flink 应用程序执行,并为每个提交的作业启动一个新的 JobMaster。它还运行 Flink WebUI 用来提供作业执行信息。


JobMaster

JobMaster 负责管理单个JobGraph的执行。Flink 集群中可以同时运行多个作业,每个作业都有自己的 JobMaster。


始终至少有一个 JobManager。高可用(HA)设置中可能有多个 JobManager,其中一个始终是 leader,其他的则是 standby(请参考 高可用(HA))。


(3.3)TaskManager

TaskManager相当于整个集群的Slave节点,负责具体的任务执行和对应任务在每个节点上的资源申请与管理。客户端通过将编写好的Flink应用编译打包,提交到JobManager,然后JobManager会根据已经注册在JobManager中的TaskManager的资源情况,将任务分配给有资源的TaskManager节点,然后启动并运行任务。TaskManager从JobManager接受需要部署的任务,然后使用Slot资源启动Task,建立数据接入的网路连接,接受数据并开始数据处理。同时TaskManager之间的数据交互都是通过数据流的方式进行的。


TaskManager(也称为 worker)执行作业流的 task,并且缓存和交换数据流。


必须始终至少有一个 TaskManager。在 TaskManager 中资源调度的最小单位是 task slot。TaskManager 中 task slot 的数量表示并发处理 task 的数量。请注意一个 task slot 中可以执行多个算子(请参考Tasks 和算子链)。


(4)Tasks 和算子链


对于分布式执行,Flink 将算子的 subtasks 链接成 tasks。每个 task 由一个线程执行。将算子链接成 task 是个有用的优化:它减少线程间切换、缓冲的开销,并且减少延迟的同时增加整体吞吐量。链行为是可以配置的;


下图中样例数据流用 5 个 subtask 执行,因此有 5 个并行线程。

3.png


(5)Task Slots 和资源


每个 worker(TaskManager)都是一个 JVM 进程,可以在单独的线程中执行一个或多个 subtask。为了控制一个 TaskManager 中接受多少个 task,就有了所谓的 task slots(至少一个)。


每个 task slot 代表 TaskManager 中资源的固定子集。例如,具有 3 个 slot 的 TaskManager,会将其托管内存 1/3 用于每个 slot。分配资源意味着 subtask 不会与其他作业的 subtask 竞争托管内存,而是具有一定数量的保留托管内存。注意此处不涉及 CPU ;当前 slot 仅分离 task 的托管内存。


通过调整 task slot 的数量,用户可以定义 subtask 如何互相隔离。每个 TaskManager 有一个 slot,这意味着每个 task 组都在单独的 JVM 中运行(例如,可以在单独的容器中启动)。具有多个 slot 意味着更多 subtask 共享同一 JVM。同一 JVM 中的 task 共享 TCP 连接(通过多路复用)和心跳信息。它们还可以共享数据集和数据结构,从而减少了每个 task 的开销。

4.png

默认情况下,Flink 允许 subtask 共享 slot,即便它们是不同的 task 的 subtask,只要是来自于同一作业即可。结果就是一个 slot 可以持有整个作业管道。允许 slot 共享有两个主要优点:


Flink集群中的任务所需Slot数可以与任务设置的并行度相同。

提高资源利用率。通过slot共享,我们示例中的基本并行度从2增加到6,充分利用slot资源,同时确保Sub Task在TaskManager之间公平分配。

5.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
打赏
0
0
0
0
12
分享
相关文章
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
16天前
|
《docker基础篇:2.Docker安装》包括前提说明、Docker的基本组成、Docker平台架构图解(架构版)、安装步骤、阿里云镜像加速、永远的HelloWorld、底层原理
《docker基础篇:2.Docker安装》包括前提说明、Docker的基本组成、Docker平台架构图解(架构版)、安装步骤、阿里云镜像加速、永远的HelloWorld、底层原理
262 89
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
124 21
Druid 架构原理及核心特性详解
Druid 是一个分布式、支持实时多维OLAP分析的列式存储数据处理系统,适用于高速实时数据读取和灵活的多维数据分析。它通过Segment、Datasource等元数据概念管理数据,并依赖Zookeeper、Hadoop和Kafka等组件实现高可用性和扩展性。Druid采用列式存储、并行计算和预计算等技术优化查询性能,支持离线和实时数据分析。尽管其存储成本较高且查询语言功能有限,但在大数据实时分析领域表现出色。
52 19
|
8天前
|
Doris 架构原理及核心特性详解
Doris 是百度内部孵化的OLAP项目,现已开源并广泛应用。它采用MPP架构、向量化执行引擎和列存储技术,提供高性能、易用性和实时数据处理能力。系统由FE(管理节点)和BE(计算与存储节点)组成,支持水平扩展和高可用性。Doris 适用于海量数据分析,尤其在电商、游戏等行业表现出色,但资源消耗较大,复杂查询优化有局限性,生态集成度有待提高。
41 15
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
118 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
一文彻底讲透GPT架构及推理原理
本篇是作者从开发人员的视角,围绕着大模型正向推理过程,对大模型的原理的系统性总结,希望对初学者有所帮助。
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
101 16
AArch64架构调用链性能数据采集原理
本次分享的主题是AArch64架构调用链性能数据采集原理,由阿里云苏轩楠分享。主要分为五个部分: 1. 术语解释 2. Frame Pointer RegisterStack Unwind 3. Dwarf-based Stack Unwind 4. /BRBE/CSRE Stack Unwind 5. Kernel-space Stack Unwind&eBPF Unwinders

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等