【科普向】模型蒸馏和模型量化到底是什么???
在数字化快速发展的时代,人工智能(AI)技术已广泛应用,但大型深度学习模型对计算资源的需求日益增长,增加了部署成本并限制了其在资源有限环境下的应用。为此,研究人员提出了模型蒸馏和模型量化两种关键技术。
模型蒸馏通过将大型教师模型的知识传递给小型学生模型,利用软标签指导训练,使学生模型在保持较高准确性的同时显著减少计算需求,特别适用于移动设备和嵌入式系统。
模型量化则是通过降低模型权重的精度(如从32位浮点数到8位整数),大幅减少模型大小和计算量,提高运行速度,并能更好地适应低配置设备。量化分为后训练量化和量化感知训练等多种方法,各有优劣。