大数据入门与实战-Hadoop核心HDFS

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据入门与实战-Hadoop核心HDFS

课程链接:https://www.imooc.com/video/16287


Hadoop简介


Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

详情见:Hadoop基本介绍


一、 HDFS概念及优缺点


  1. 应用场景与特点
  • 普通的成百上千的机器
  • 按TB甚至PB为单位的大量的数据
  • 简单便捷的文件获取


  1. HDFS概念
    数据块是抽象块而非整个文件作为存储单元,默认大小为64MB,一般设置为128M,备份x3

20.png

NameNode 管理文件系统的命名空间,存放文件元数据,维护着文件系统的所有文件和目录,文件与数据快的反射,记录每个文件中各个块所在数据节点的信息


DataNode存储检索数据块,向NameNode更新所存储块的列表

  1. HDFS优点
  • 适合大文件存储,支持TB,PB级的数据存储
  • 可以构建在廉价的机器上,并有一定的容错和恢复机制
  • 支持流式数据访问,一次写入、多次读取最高效
  1. HDFS缺点
  • 不适合大量小文件存储
  • 不适合并发写入,不支持文件随机修改
  • 不支持随机读等低延时的访问方式


二、HDFS写流程与读流程


21.png


HDFS写流程:(1)客户端向NameNode发起写数据请求(2)分块写入DateNode节点,DataNode自动完成副本备份(3)DataNode向NameNode汇报存储完成,NameNode通知客户端


22.png


HDFS读流程:(1)客户端向NameNode发起读数据请求(2)NameNode找出距离最近的DataNode节点信息(3)客户端从DataNode分块下载文件


三、Shell命令操作HDFS


23.png


将home下的mk.txt上传到hdfs


24.png


四 、Python程序操作HDFS


hdfs3:http://hdfs3.readthedocs.io/en/latest/


25.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
165 0
|
4月前
|
存储 SQL 分布式计算
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
194 19
|
6月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
500 70
|
4月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
6月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
275 79
|
10月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
639 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
7月前
|
SQL 缓存 数据处理
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
326 3
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)