MapReduce基本原理(详解!)

简介: 笔记

一、概念理解


MapReduce是面向大数据并行处理的计算模型、框架和平台,它隐含了以下三层含义:

1)MapReduce是一个基于集群的高性能并行计算平台。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算集群。

2)MapReduce是一个并行计算与运行软件框架。它提供了一个庞大但设计精良的并行计算软件框架,能自动完成计算任务的并行化处理,自动划分计算数据和计算任务,在集群节点上自动分配和执行任务以及收集计算结果,将数据分布存储、数据通信、容错处理等并行计算涉及到的很多系统底层的复杂细节交由系统负责处理,大大减少了软件开发人员的负担。

3)MapReduce是一个并行程序设计模型与方法。它借助于函数式程序设计语言Lisp的设计思想,提供了一种简便的并行程序设计方法,用Map和Reduce两个函数编程实现基本的并行计算任务,提供了抽象的操作和并行编程接口,以简单方便地完成大规模数据的编程和计算处理。


总结:MapReduce是一个基于集群的计算平台,是一个简化分布式编程的计算框架,是一个将分布式计算抽象为Map和Reduce两个阶段的编程模型。


MapReduce核心思想:分而治之


二、MapReduce计算模型


我们知道MapReduce计算模型主要由三个阶段构成:Map、shuffle、Reduce。


Map是映射,负责数据的过滤分法,将原始数据转化为键值对;Reduce是合并,将具有相同key值的value进行处理后再输出新的键值对作为最终结果。为了让Reduce可以并行处理Map的结果,必须对Map的输出进行一定的排序与分割,然后再交给对应的Reduce,而这个将Map输出进行进一步整理并交给Reduce的过程就是Shuffle。整个MR的大致过程如下:


mapreduce运行原理图解

20.png

21.png22.png23.jpg



Map和Reduce操作需要我们自己定义相应Map类和Reduce类,以完成我们所需要的化简、合并操作,而shuffle则是系统自动帮我们实现的,了解shuffle的具体流程能帮助我们编写出更加高效的Mapreduce程序。


Shuffle过程包含在Map和Reduce两端,即Map shuffle和Reduce shuffle


三、Map shuffle


在Map端的shuffle过程是对Map的结果进行分区、排序、分割,然后将属于同一划分(分区)的输出合并在一起并写在磁盘上,最终得到一个分区有序的文件,分区有序的含义是map输出的键值对按分区进行排列,具有相同partition值的键值对存储在一起,每个分区里面的键值对又按key值进行升序排列(默认),其流程大致如下:24.png


(1)Partition

对于map输出的每一个键值对,系统都会给定一个partition,partition值默认是通过计算key的hash值后对Reduce task的数量取模获得。如果一个键值对的partition值为1,意味着这个键值对会交给第一个Reducer处理。


我们知道每一个Reduce的输出都是有序的,但是将所有Reduce的输出合并到一起却并非是全局有序的,如果要做到全局有序,我们该怎么做呢?最简单的方式,只设置一个Reduce task,但是这样完全发挥不出集群的优势,而且能应对的数据量也很受限。最佳的方式是自己定义一个Partitioner,用输入数据的最大值除以系统Reduce task数量的商作为分割边界,也就是说分割数据的边界为此商的1倍、2倍至numPartitions-1倍,这样就能保证执行partition后的数据是整体有序的。


另一种需要我们自己定义一个Partitioner的情况是各个Reduce task处理的键值对数量极不平衡。对于某些数据集,由于很多不同的key的hash值都一样,导致这些键值对都被分给同一个Reducer处理,而其他的Reducer处理的键值对很少,从而拖延整个任务的进度。当然,编写自己的Partitioner必须要保证具有相同key值的键值对分发到同一个Reducer。


(2)Collector

Map的输出结果是由collector处理的,每个Map任务不断地将键值对输出到在内存中构造的一个环形数据结构中。使用环形数据结构是为了更有效地使用内存空间,在内存中放置尽可能多的数据。


这个数据结构其实就是个字节数组,叫Kvbuffer,名如其义,但是这里面不光放置了数据,还放置了一些索引数据,给放置索引数据的区域起了一个Kvmeta的别名,在Kvbuffer的一块区域上穿了一个IntBuffer(字节序采用的是平台自身的字节序)的马甲。数据区域和索引数据区域在Kvbuffer中是相邻不重叠的两个区域,用一个分界点来划分两者,分界点不是亘古不变的,而是每次Spill之后都会更新一次。初始的分界点是0,数据的存储方向是向上增长,索引数据的存储方向是向下增长,如图所示:

25.png

Kvbuffer的存放指针bufindex是一直闷着头地向上增长,比如bufindex初始值为0,一个Int型的key写完之后,bufindex增长为4,一个Int型的value写完之后,bufindex增长为8。


索引是对在kvbuffer中的键值对的索引,是个四元组,包括:value的起始位置、key的起始位置、partition值、value的长度,占用四个Int长度,Kvmeta的存放指针Kvindex每次都是向下跳四个“格子”,然后再向上一个格子一个格子地填充四元组的数据。比如Kvindex初始位置是-4,当第一个键值对写完之后,(Kvindex+0)的位置存放value的起始位置、(Kvindex+1)的位置存放key的起始位置、(Kvindex+2)的位置存放partition的值、(Kvindex+3)的位置存放value的长度,然后Kvindex跳到-8位置,等第二个键值对和索引写完之后,Kvindex跳到-12位置。


Kvbuffer的大小可以通过io.sort.mb设置,默认大小为100M。但不管怎么设置,Kvbuffer的容量都是有限的,键值对和索引不断地增加,加着加着,Kvbuffer总有不够用的那天,那怎么办?把数据从内存刷到磁盘上再接着往内存写数据,把Kvbuffer中的数据刷到磁盘上的过程就叫Spill,多么明了的叫法,内存中的数据满了就自动地spill到具有更大空间的磁盘。


关于Spill触发的条件,也就是Kvbuffer用到什么程度开始Spill,还是要讲究一下的。如果把Kvbuffer用得死死得,一点缝都不剩的时候再开始Spill,那Map任务就需要等Spill完成腾出空间之后才能继续写数据;如果Kvbuffer只是满到一定程度,比如80%的时候就开始Spill,那在Spill的同时,Map任务还能继续写数据,如果Spill够快,Map可能都不需要为空闲空间而发愁。两利相衡取其大,一般选择后者。Spill的门限可以通过io.sort.spill.percent,默认是0.8。


Spill这个重要的过程是由Spill线程承担,Spill线程从Map任务接到“命令”之后就开始正式干活,干的活叫SortAndSpill,原来不仅仅是Spill,在Spill之前还有个颇具争议性的Sort。


(3)Sort

当Spill触发后,SortAndSpill先把Kvbuffer中的数据按照partition值和key两个关键字升序排序,移动的只是索引数据,排序结果是Kvmeta中数据按照partition为单位聚集在一起,同一partition内的按照key有序。


(4)Spill

Spill线程为这次Spill过程创建一个磁盘文件:从所有的本地目录中轮训查找能存储这么大空间的目录,找到之后在其中创建一个类似于“spill12.out”的文件。Spill线程根据排过序的Kvmeta挨个partition的把数据吐到这个文件中,一个partition对应的数据吐完之后顺序地吐下个partition,直到把所有的partition遍历完。一个partition在文件中对应的数据也叫段(segment)。在这个过程中如果用户配置了combiner类,那么在写之前会先调用combineAndSpill(),对结果进行进一步合并后再写出。Combiner会优化MapReduce的中间结果,所以它在整个模型中会多次使用。那哪些场景才能使用Combiner呢?Combiner的输出是Reducer的输入,Combiner绝不能改变最终的计算结果。所以从我的想法来看,Combiner只应该用于那种Reduce的输入key/value与输出key/value类型完全一致,且不影响最终结果的场景。比如累加,最大值等。Combiner的使用一定得慎重,如果用好,它对job执行效率有帮助,反之会影响reduce的最终结果。


所有的partition对应的数据都放在这个文件里,虽然是顺序存放的,但是怎么直接知道某个partition在这个文件中存放的起始位置呢?强大的索引又出场了。有一个三元组记录某个partition对应的数据在这个文件中的索引:起始位置、原始数据长度、压缩之后的数据长度,一个partition对应一个三元组。然后把这些索引信息存放在内存中,如果内存中放不下了,后续的索引信息就需要写到磁盘文件中了:从所有的本地目录中轮训查找能存储这么大空间的目录,找到之后在其中创建一个类似于“spill12.out.index”的文件,文件中不光存储了索引数据,还存储了crc32的校验数据。spill12.out.index不一定在磁盘上创建,如果内存(默认1M空间)中能放得下就放在内存中,即使在磁盘上创建了,和spill12.out文件也不一定在同一个目录下。每一次Spill过程就会最少生成一个out文件,有时还会生成index文件,Spill的次数也烙印在文件名中。索引文件和数据文件的对应关系如下图所示:

26.png

在Spill线程如火如荼的进行SortAndSpill工作的同时,Map任务不会因此而停歇,而是一无既往地进行着数据输出。Map还是把数据写到kvbuffer中,那问题就来了:只顾着闷头按照bufindex指针向上增长,kvmeta只顾着按照Kvindex向下增长,是保持指针起始位置不变继续跑呢,还是另谋它路?如果保持指针起始位置不变,很快bufindex和Kvindex就碰头了,碰头之后再重新开始或者移动内存都比较麻烦,不可取。Map取kvbuffer中剩余空间的中间位置,用这个位置设置为新的分界点,bufindex指针移动到这个分界点,Kvindex移动到这个分界点的-16位置,然后两者就可以和谐地按照自己既定的轨迹放置数据了,当Spill完成,空间腾出之后,不需要做任何改动继续前进。分界点的转换如下图所示:

27.png

Map任务总要把输出的数据写到磁盘上,即使输出数据量很小在内存中全部能装得下,在最后也会把数据刷到磁盘上。


(5)Merge

Map任务如果输出数据量很大,可能会进行好几次Spill,out文件和Index文件会产生很多,分布在不同的磁盘上。最后把这些文件进行合并的merge过程闪亮登场。


Merge过程怎么知道产生的Spill文件都在哪了呢?从所有的本地目录上扫描得到产生的Spill文件,然后把路径存储在一个数组里。Merge过程又怎么知道Spill的索引信息呢?没错,也是从所有的本地目录上扫描得到Index文件,然后把索引信息存储在一个列表里。到这里,又遇到了一个值得纳闷的地方。在之前Spill过程中的时候为什么不直接把这些信息存储在内存中呢,何必又多了这步扫描的操作?特别是Spill的索引数据,之前当内存超限之后就把数据写到磁盘,现在又要从磁盘把这些数据读出来,还是需要装到更多的内存中。之所以多此一举,是因为这时kvbuffer这个内存大户已经不再使用可以回收,有内存空间来装这些数据了。(对于内存空间较大的土豪来说,用内存来省却这两个io步骤还是值得考虑的。)


然后为merge过程创建一个叫file.out的文件和一个叫file.out.Index的文件用来存储最终的输出和索引,一个partition一个partition的进行合并输出。对于某个partition来说,从索引列表中查询这个partition对应的所有索引信息,每个对应一个段插入到段列表中。也就是这个partition对应一个段列表,记录所有的Spill文件中对应的这个partition那段数据的文件名、起始位置、长度等等。

28.png

然后对这个partition对应的所有的segment进行合并,目标是合并成一个segment。当这个partition对应很多个segment时,会分批地进行合并:先从segment列表中把第一批取出来,以key为关键字放置成最小堆,然后从最小堆中每次取出最小的输出到一个临时文件中,这样就把这一批段合并成一个临时的段,把它加回到segment列表中;再从segment列表中把第二批取出来合并输出到一个临时segment,把其加入到列表中;这样往复执行,直到剩下的段是一批,输出到最终的文件中。最终的索引数据仍然输出到Index文件中。


四、Reduce shuffle


在Reduce端,shuffle主要分为复制Map输出、排序合并两个阶段。


(1)Copy

Reduce任务通过HTTP向各个Map任务拖取它所需要的数据。Map任务成功完成后,会通知父TaskTracker状态已经更新,TaskTracker进而通知JobTracker(这些通知在心跳机制中进行)。所以,对于指定作业来说,JobTracker能记录Map输出和TaskTracker的映射关系。Reduce会定期向JobTracker获取Map的输出位置,一旦拿到输出位置,Reduce任务就会从此输出对应的TaskTracker上复制输出到本地,而不会等到所有的Map任务结束。


(2)Merge Sort

Copy过来的数据会先放入内存缓冲区中,如果内存缓冲区中能放得下这次数据的话就直接把数据写到内存中,即内存到内存merge。Reduce要向每个Map去拖取数据,在内存中每个Map对应一块数据,当内存缓存区中存储的Map数据占用空间达到一定程度的时候,开始启动内存中merge,把内存中的数据merge输出到磁盘上一个文件中,即内存到磁盘merge。在将buffer中多个map输出合并写入磁盘之前,如果设置了Combiner,则会化简压缩合并的map输出。Reduce的内存缓冲区可通过mapred.job.shuffle.input.buffer.percent配置,默认是JVM的heap size的70%。内存到磁盘merge的启动门限可以通过mapred.job.shuffle.merge.percent配置,默认是66%。


当属于该reducer的map输出全部拷贝完成,则会在reducer上生成多个文件(如果拖取的所有map数据总量都没有内存缓冲区,则数据就只存在于内存中),这时开始执行合并操作,即磁盘到磁盘merge,Map的输出数据已经是有序的,Merge进行一次合并排序,所谓Reduce端的sort过程就是这个合并的过程。一般Reduce是一边copy一边sort,即copy和sort两个阶段是重叠而不是完全分开的。最终Reduce shuffle过程会输出一个整体有序的数据块。


五、Mapreduce中Mapper、Partition、Reducer数目的确定与关系


Mapper: 由客户端分片情况决定,客户端获取到输入路径的所有文件,依次对每个文件执行分片,分片大小通过最大分片大小、最小分片大小、hdfs的blocksize综合确定,分片结果写入job.split提交给yarn,对每个分片分配一个Mapper,即确定了数目。


Partition:


由PartitionerClass中的逻辑确定,默认情况下使用的HashPartitioner中使用了hash值与reducerNum的余数,即由reducerNum决定,等于Reducer数目。

如果自定义的PartitionerClass中有其他逻辑比如固定了,也可以与Reducer数目无关。

Reducer:


ReduceTask默认值是1

reduce task数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个reducetask;

reduceTask的个数一定要与分区数保持一致,否则分区将不具有任何意义

分区数和reduce task的比例可以:1:1,N:1,1:N,但是不能出现reduce task的数量不为1,而且少于分区数的情况,这样框架就不知道该分给谁。如果reduce task的数量多于分区数,则会产生无任务的reduecer但不会影响结果。但是如果reducerNum只有1个,则不会报错而是所有分区都交给唯一的reducer。(通过job.setNumReduceTasks手动设置决定)

总结分区数和reducer的个数比例:


1:1

1:N

N:1

不可以是N:M(N>M,M!=1)


相关文章
|
6月前
|
分布式计算 Hadoop
Hadoop系列 mapreduce 原理分析
Hadoop系列 mapreduce 原理分析
81 1
|
6月前
|
存储 分布式计算 负载均衡
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
223 0
|
6月前
|
存储 分布式计算 关系型数据库
bigdata-08-MapReduce原理到实战
bigdata-08-MapReduce原理到实战
81 0
|
6月前
|
分布式计算 并行计算 数据处理
什么是MapReduce?请简要解释其工作原理。
什么是MapReduce?请简要解释其工作原理。
106 0
|
机器学习/深度学习 分布式计算 大数据
大数据 - MapReduce:从原理到实战的全面指南
大数据 - MapReduce:从原理到实战的全面指南
1308 0
|
存储 分布式计算 Hadoop
Hadoop基础学习---6、MapReduce框架原理(一)
Hadoop基础学习---6、MapReduce框架原理(一)
|
分布式计算 Hadoop 数据处理
Hadoop基础学习---6、MapReduce框架原理(二)
Hadoop基础学习---6、MapReduce框架原理(二)
|
分布式计算
MapReduce 的原理、流程【重要】
MapReduce 的原理、流程【重要】
168 0
|
机器学习/深度学习 分布式计算 监控
Hadoop生态系统中的数据处理技术:MapReduce的原理与应用
Hadoop生态系统中的数据处理技术:MapReduce的原理与应用
|
分布式计算 Java
Mapreduce执行机制之提交任务和切片原理
Mapreduce执行机制之提交任务和切片原理
103 0
下一篇
无影云桌面