【每日算法】简单线性 DP 与简单拓展|Python 主题月

简介: 【每日算法】简单线性 DP 与简单拓展|Python 主题月

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的 剑指 Offer 42. 连续子数组的最大和 ,难度为 简单


Tag : 「线性 DP」


输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。


要求时间复杂度为O(n)O(n)


示例1:


输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
复制代码


提示:


  • 1 <= arr.length <= 10^5105
  • -100 <= arr[i] <= 100


动态规划



这是一道简单线性 DP 题。


定义 f[i]f[i] 为考虑以 nums[i]nums[i] 为结尾的子数组的最大值。


不失一般性的考虑 f[i]f[i] 如何转移。


显然对于 nums[i]nums[i] 而言,以它为结尾的子数组分两种情况:


  • num[i]num[i] 自身作为独立子数组:f[i] = nums[i]f[i]=nums[i]
  • num[i]num[i] 与之前的数值组成子数组,由于是子数组,其只能接在 nums[i - 1]nums[i1],即有:f[i] = f[i - 1] + nums[i]f[i]=f[i1]+nums[i]


最终 f[i]f[i] 为上述两种情况取 \maxmax 即可:


f[i] = \max(nums[i], f[i - 1] + nums[i])f[i]=max(nums[i],f[i1]+nums[i])


Java 代码:


class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        f[0] = nums[0];
        int ans = f[0];
        for (int i = 1; i < n; i++) {
            f[i] = Math.max(nums[i], f[i - 1] + nums[i]);
            ans = Math.max(ans, f[i]);
        }
        return ans;
    }
}
复制代码


Python 3 代码:


class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        f = [0] * n
        ans = f[0] = nums[0]
        for i in range(1, n):
            f[i] = max(nums[i], f[i - 1] + nums[i])
            ans = max(ans, f[i])
        return ans
复制代码


  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(n)O(n)


空间优化



观察状态转移方程,我们发现 f[i]f[i] 明确值依赖于 f[i - 1]f[i1]


因此我们可以使用「有限变量」或者「滚动数组」的方式,将空间优化至 O(1)O(1)


Java 代码:


class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int max = nums[0], ans = max;
        for (int i = 1; i < n; i++) {
            max = Math.max(nums[i], max + nums[i]);
            ans = Math.max(ans, max);
        }
        return ans;
    }
}
复制代码


class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int[] f = new int[2];
        f[0] = nums[0];
        int ans = f[0];
        for (int i = 1; i < n; i++) {
            int a = i & 1, b = (i - 1) & 1;
            f[a] = Math.max(nums[i], f[b] + nums[i]);
            ans = Math.max(ans, f[a]);
        }
        return ans;
    }
}
复制代码


Python 3 代码:


class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        ans = curMax = nums[0]
        for i in range(1, n):
            curMax = max(nums[i], curMax + nums[i])
            ans = max(ans, curMax)
        return ans
复制代码


class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        ans = nums[0]
        f = [ans, 0]
        for i in range(1, n):
            a, b = i & 1, (i - 1) & 1
            f[a] = max(nums[i], f[b] + nums[i])
            ans = max(ans, f[a])
        return ans
复制代码


  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(1)O(1)


拓展



一个有意思的拓展是,将 加法 替换成 乘法


题目变成 152. 乘积最大子数组(中等)


又该如何考虑呢?


一个朴素的想法,仍然是考虑定义 f[i]f[i] 代表以 nums[i]nums[i] 为结尾的最大值,但存在「负负得正」取得最大值的情况,光维护一个前缀最大值显然是不够的,我们可以多引入一维 g[i]g[i] 作为前缀最小值。


其余分析与本题同理。


Java 代码:


class Solution {
    public int maxProduct(int[] nums) {
        int n = nums.length;
        int[] g = new int[n + 1]; // 考虑前 i 个,结果最小值
        int[] f = new int[n + 1]; // 考虑前 i 个,结果最大值
        g[0] = 1;
        f[0] = 1;
        int ans = nums[0];
        for (int i = 1; i <= n; i++) {
            int x = nums[i - 1];
            g[i] = Math.min(x, Math.min(g[i - 1] * x, f[i - 1] * x));
            f[i] = Math.max(x, Math.max(g[i - 1] * x, f[i - 1] * x));
            ans = Math.max(ans, f[i]);
        }
        return ans;
    }
}
复制代码


class Solution {
    public int maxProduct(int[] nums) {
        int n = nums.length;
        int min = 1, max = 1;
        int ans = nums[0];
        for (int i = 1; i <= n; i++) {
            int x = nums[i - 1];
            int nmin = Math.min(x, Math.min(min * x, max * x));
            int nmax = Math.max(x, Math.max(min * x, max * x));
            min = nmin;
            max = nmax;
            ans = Math.max(ans, max);
        }
        return ans;
    }
}
复制代码


Python 3 代码:


class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        g = [0] * (n + 1) # 考虑前 i 个,结果最小值
        f = [0] * (n + 1) # 考虑前 i 个,结果最大值
        g[0] = f[0] = 1
        ans = nums[0]
        for i in range(1, n + 1):
            x = nums[i - 1]
            g[i] = min(x, min(g[i-1] * x, f[i-1] * x))
            f[i] = max(x, max(g[i-1] * x, f[i-1] * x))
            ans = max(ans, max(f[i], g[i]))
        return ans
复制代码


最后



这是我们「刷穿 LeetCode」系列文章的第 No.剑指 Offer 42 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
60 1
|
9月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
803 55
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
72 4
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
477 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
3月前
|
PyTorch 算法框架/工具 C++
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
|
4月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
161 18
|
4月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
126 2
|
5月前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
107 7

热门文章

最新文章

推荐镜像

更多