看动画学算法之:平衡二叉搜索树AVL Tree

简介: 看动画学算法之:平衡二叉搜索树AVL Tree

目录



简介


平衡二叉搜索树是一种特殊的二叉搜索树。为什么会有平衡二叉搜索树呢?


考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表。从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数。


而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn)。


AVL的特性


在讨论AVL的特性之前,我们先介绍一个概念叫做平衡因子,平衡因子表示的是左子树和右子树的高度差。


如果平衡因子=0,表示这是一个完全平衡二叉树。


如果平衡因子=1,那么这棵树就是平衡二叉树AVL。


也就是是说AVL的平衡因子不能够大于1。


先看一个AVL的例子:


image.png


总结一下,AVL首先是一个二叉搜索树,然后又是一个二叉平衡树。


AVL的构建


有了AVL的特性之后,我们看下AVL是怎么构建的。


public class AVLTree {
    //根节点
    Node root;
    class Node {
        int data; //节点的数据
        int height; //节点的高度
        Node left;
        Node right;
        public Node(int data) {
            this.data = data;
            left = right = null;
        }
    }


同样的,AVL也是由各个节点构成的,每个节点拥有data,left和right几个属性。


因为是二叉平衡树,节点是否平衡还跟节点的高度有关,所以我们还需要定义一个height作为节点的高度。


在来两个辅助的方法,一个是获取给定的节点高度:


//获取给定节点的高度
    int height(Node node) {
        if (node == null)
            return 0;
        return node.height;
    }


和获取平衡因子:


//获取平衡因子
    int getBalance(Node node) {
        if (node == null)
            return 0;
        return height(node.left) - height(node.right);
    }


AVL的搜索


AVL的搜索和二叉搜索树的搜索方式是一致的。


先看一个直观的例子,怎么在AVL中搜索到7这个节点:


image.png


搜索的基本步骤是:


  1. 从根节点15出发,比较根节点和搜索值的大小
  2. 如果搜索值小于节点值,那么递归搜索左侧树
  3. 如果搜索值大于节点值,那么递归搜索右侧树
  4. 如果节点匹配,则直接返回即可。


相应的java代码如下:


//搜索方法,默认从根节点搜索
    public Node search(int data){
        return search(root,data);
    }
    //递归搜索节点
    private Node search(Node node, int data)
    {
        // 如果节点匹配,则返回节点
        if (node==null || node.data==data)
            return node;
        // 节点数据大于要搜索的数据,则继续搜索左边节点
        if (node.data > data)
            return search(node.left, data);
        // 如果节点数据小于要搜素的数据,则继续搜索右边节点
        return search(node.right, data);
    }


AVL的插入


AVL的插入和BST的插入是一样的,不过插入之后有可能会导致树不再平衡,所以我们需要做一个再平衡的步骤。


看一个直观的动画:


image.png


插入的逻辑是这样的:


  1. 从根节点出发,比较节点数据和要插入的数据
  2. 如果要插入的数据小于节点数据,则递归左子树插入
  3. 如果要插入的数据大于节点数据,则递归右子树插入
  4. 如果根节点为空,则插入当前数据作为根节点


插入数据之后,我们需要做再平衡。


再平衡的逻辑是这样的:


  1. 从插入的节点向上找出第一个未平衡的节点,这个节点我们记为z
  2. 对z为根节点的子树进行旋转,得到一个平衡树。


根据以z为根节点的树的不同,我们有四种旋转方式:


  • left-left:


image.png


如果是left left的树,那么进行一次右旋就够了。


右旋的步骤是怎么样的呢?


  1. 找到z节点的左节点y
  2. 将y作为旋转后的根节点
  3. z作为y的右节点
  4. y的右节点作为z的左节点
  5. 更新z的高度


相应的代码如下:


Node rightRotate(Node node) {
        Node x = node.left;
        Node y = x.right;
        // 右旋
        x.right = node;
        node.left = y;
        // 更新node和x的高度
        node.height = max(height(node.left), height(node.right)) + 1;
        x.height = max(height(x.left), height(x.right)) + 1;
        // 返回新的x节点
        return x;
    }
  • right-right:


如果是right-right形式的树,需要经过一次左旋:


image.png


左旋的步骤正好和右旋的步骤相反:


  1. 找到z节点的右节点y
  2. 将y作为旋转后的根节点
  3. z作为y的左节点
  4. y的左节点作为z的右节点
  5. 更新z的高度


相应的代码如下:


//左旋
    Node leftRotate(Node node) {
        Node x = node.right;
        Node y = x.left;
        //左旋操作
        x.left = node;
        node.right = y;
        // 更新node和x的高度
        node.height = max(height(node.left), height(node.right)) + 1;
        x.height = max(height(x.left), height(x.right)) + 1;
        // 返回新的x节点
        return x;
    }


  • left-right:


image.png


如果是left right的情况,需要先进行一次左旋将树转变成left left格式,然后再进行一次右旋,得到最终结果。


  • right-left:


image.png


如果是right left格式,需要先进行一次右旋,转换成为right right格式,然后再进行一次左旋即可。


现在问题来了,怎么判断一个树到底是哪种格式呢?我们可以通过获取平衡因子和新插入的数据比较来判断:


  1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小
    如果data < node.left.data,表示是left left的情况,只需要一次右旋即可
    如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
  2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小
    如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可
    如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋


插入节点的最终代码如下:


//插入新节点,从root开始
    public void insert(int data){
        root=insert(root, data);
    }
    //遍历插入新节点
    Node insert(Node node, int data) {
        //先按照普通的BST方法插入节点
        if (node == null)
            return (new Node(data));
        if (data < node.data)
            node.left = insert(node.left, data);
        else if (data > node.data)
            node.right = insert(node.right, data);
        else
            return node;
        //更新节点的高度
        node.height = max(height(node.left), height(node.right)) + 1;
        //判断节点是否平衡
        int balance = getBalance(node);
        //节点不平衡有四种情况
        //1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小
        //如果data < node.left.data,表示是left left的情况,只需要一次右旋即可
        //如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
        //2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小
        //如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可
        //如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
        //left left
        if (balance > 1 && data < node.left.data)
            return rightRotate(node);
        // Right Right
        if (balance < -1 && data > node.right.data)
            return leftRotate(node);
        // Left Right
        if (balance > 1 && data > node.left.data) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }
        // Right Left
        if (balance < -1 && data < node.right.data) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }
        //返回插入后的节点
        return node;
    }


AVL的删除


AVL的删除和插入类似。


首先按照普通的BST删除,然后也需要做再平衡。


看一个直观的动画:


image.png

删除之后,节点再平衡也有4种情况:


  1. 如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子
    如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可
    如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
  2. 如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子
    如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可
    如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋


相应的代码如下:


Node delete(Node node, int data)
    {
        //Step 1. 普通BST节点删除
        // 如果节点为空,直接返回
        if (node == null)
            return node;
        // 如果值小于当前节点,那么继续左节点删除
        if (data < node.data)
            node.left = delete(node.left, data);
        //如果值大于当前节点,那么继续右节点删除
        else if (data > node.data)
            node.right = delete(node.right, data);
       //如果值相同,那么就是要删除的节点
        else
        {
            // 如果是单边节点的情况
            if ((node.left == null) || (node.right == null))
            {
                Node temp = null;
                if (temp == node.left)
                    temp = node.right;
                else
                    temp = node.left;
                //没有子节点的情况
                if (temp == null)
                {
                    node = null;
                }
                else // 单边节点的情况
                    node = temp;
            }
            else
            {  //非单边节点的情况
                //拿到右侧节点的最小值
                Node temp = minValueNode(node.right);
                //将最小值作为当前的节点值
                node.data = temp.data;
                // 将该值从右侧节点删除
                node.right = delete(node.right, temp.data);
            }
        }
        // 如果节点为空,直接返回
        if (node == null)
            return node;
        // step 2: 更新当前节点的高度
        node.height = max(height(node.left), height(node.right)) + 1;
        // step 3: 获取当前节点的平衡因子
        int balance = getBalance(node);
        // 如果节点不再平衡,那么有4种情况
        //1.如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子
        //如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可
        //如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
        //2.如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子
        //如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可
        //如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
        // Left Left Case
        if (balance > 1 && getBalance(node.left) >= 0)
            return rightRotate(node);
        // Left Right Case
        if (balance > 1 && getBalance(node.left) < 0)
        {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }
        // Right Right Case
        if (balance < -1 && getBalance(node.right) <= 0)
            return leftRotate(node);
        // Right Left Case
        if (balance < -1 && getBalance(node.right) > 0)
        {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }
        return node;
    }
相关文章
|
7月前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
4月前
|
存储 监控 算法
公司内部网络监控中的二叉搜索树算法:基于 Node.js 的实时设备状态管理
在数字化办公生态系统中,公司内部网络监控已成为企业信息安全管理体系的核心构成要素。随着局域网内终端设备数量呈指数级增长,实现设备状态的实时追踪与异常节点的快速定位,已成为亟待解决的关键技术难题。传统线性数据结构在处理动态更新的设备信息时,存在检索效率低下的固有缺陷;而树形数据结构因其天然的分层特性与高效的检索机制,逐渐成为网络监控领域的研究热点。本文以二叉搜索树(Binary Search Tree, BST)作为研究对象,系统探讨其在公司内部网络监控场景中的应用机制,并基于 Node.js 平台构建一套具备实时更新与快速查询功能的设备状态管理算法框架。
116 3
|
6月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
172 22
|
6月前
|
存储 监控 算法
基于 PHP 二叉搜索树算法的内网行为管理机制探究
在当今数字化网络环境中,内网行为管理对于企业网络安全及高效运营具有至关重要的意义。它涵盖对企业内部网络中各类行为的监测、分析与管控。在内网行为管理技术体系里,算法与数据结构扮演着核心角色。本文将深入探究 PHP 语言中的二叉搜索树算法于内网行为管理中的应用。
62 4
|
7月前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
236 15
|
7月前
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
7月前
|
监控 算法 安全
关于公司电脑桌面监控中 PHP 二叉搜索树算法的深度剖析
在现代企业管理中,公司电脑桌面监控系统通过二叉搜索树(BST)算法保障信息安全和提高效率。本文探讨PHP中的BST在监控场景的应用,包括节点定义、插入与查找操作,并展示如何管理时间戳数据,以快速查询特定时间段内的操作记录。BST的高效性使其成为处理复杂监控数据的理想选择。
60 2
|
8月前
|
存储 算法 安全
U 盘管控情境下 Python 二叉搜索树算法的深度剖析与探究
在信息技术高度发达的今天,数据安全至关重要。U盘作为常用的数据存储与传输工具,其管控尤为关键。本文探讨Python中的二叉搜索树算法在U盘管控中的应用,通过高效管理授权U盘信息,防止数据泄露,保障信息安全。二叉搜索树具有快速插入和查找的优势,适用于大量授权U盘的管理。尽管存在一些局限性,如树结构退化问题,但通过优化和改进,如采用自平衡树,可以有效提升U盘管控系统的性能和安全性。
93 3
|
11月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
247 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
存储 算法 C#
C#二叉搜索树算法
C#二叉搜索树算法

热门文章

最新文章