LinkedHashMap 底层分析(下)

简介: 众所周知 HashMap 是一个无序的 Map,因为每次根据 key 的 hashcode 映射到 Entry 数组上,所以遍历出来的顺序并不是写入的顺序。

构造方法


LinkedHashMap 的构造方法:


public LinkedHashMap() {
        super();
        accessOrder = false;
    }


其实就是调用的 HashMap 的构造方法:


HashMap 实现:


public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        //HashMap 只是定义了改方法,具体实现交给了 LinkedHashMap
        init();
    }


可以看到里面有一个空的 init(),具体是由 LinkedHashMap 来实现的:


@Override
    void init() {
        header = new Entry<>(-1, null, null, null);
        header.before = header.after = header;
    }


其实也就是对 header 进行了初始化。


put 方法


LinkedHashMapput() 方法之前先看看 HashMapput 方法:


public V put(K key, V value) {
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                //空实现,交给 LinkedHashMap 自己实现
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        // LinkedHashMap 对其重写
        addEntry(hash, key, value, i);
        return null;
    }
    // LinkedHashMap 对其重写
    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }
        createEntry(hash, key, value, bucketIndex);
    }
    // LinkedHashMap 对其重写
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }       


主体的实现都是借助于 HashMap 来完成的,只是对其中的 recordAccess(), addEntry(), createEntry() 进行了重写。


LinkedHashMap 的实现:


//就是判断是否是根据访问顺序排序,如果是则需要将当前这个 Entry 移动到链表的末尾
        void recordAccess(HashMap<K,V> m) {
            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
            if (lm.accessOrder) {
                lm.modCount++;
                remove();
                addBefore(lm.header);
            }
        }
    //调用了 HashMap 的实现,并判断是否需要删除最少使用的 Entry(默认不删除)    
    void addEntry(int hash, K key, V value, int bucketIndex) {
        super.addEntry(hash, key, value, bucketIndex);
        // Remove eldest entry if instructed
        Entry<K,V> eldest = header.after;
        if (removeEldestEntry(eldest)) {
            removeEntryForKey(eldest.key);
        }
    }
    void createEntry(int hash, K key, V value, int bucketIndex) {
        HashMap.Entry<K,V> old = table[bucketIndex];
        Entry<K,V> e = new Entry<>(hash, key, value, old);
        //就多了这一步,将新增的 Entry 加入到 header 双向链表中
        table[bucketIndex] = e;
        e.addBefore(header);
        size++;
    }
        //写入到双向链表中
        private void addBefore(Entry<K,V> existingEntry) {
            after  = existingEntry;
            before = existingEntry.before;
            before.after = this;
            after.before = this;
        }  


get 方法


LinkedHashMap 的 get() 方法也重写了:


public V get(Object key) {
        Entry<K,V> e = (Entry<K,V>)getEntry(key);
        if (e == null)
            return null;
        //多了一个判断是否是按照访问顺序排序,是则将当前的 Entry 移动到链表头部。    
        e.recordAccess(this);
        return e.value;
    }
    void recordAccess(HashMap<K,V> m) {
        LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
        if (lm.accessOrder) {
            lm.modCount++;
            //删除
            remove();
            //添加到头部
            addBefore(lm.header);
        }
    }


clear() 清空就要比较简单了:


//只需要把指针都指向自己即可,原本那些 Entry 没有引用之后就会被 JVM 自动回收。
    public void clear() {
        super.clear();
        header.before = header.after = header;
    }


总结


总的来说 LinkedHashMap 其实就是对 HashMap 进行了拓展,使用了双向链表来保证了顺序性。


因为是继承与 HashMap 的,所以一些 HashMap 存在的问题 LinkedHashMap 也会存在,比如不支持并发等。


相关文章
|
存储 算法 Java
HashMap 之底层数据结构和扩容机制
HashMap 之底层数据结构和扩容机制
966 1
|
25天前
|
存储 Java Serverless
HashMap的底层数据结构是怎样的
在Java中,HashMap是一种基于哈希表的Map接口实现,以其高效的数据存取能力而广泛使用。本文将深入探讨HashMap的底层数据结构,揭示其如何通过数组、链表和红黑树的结合来优化性能。
|
25天前
|
存储 Java Serverless
深入探索:HashMap的底层数据结构揭秘
HashMap作为Java中一个非常重要的集合类,其底层数据结构的设计对于性能有着至关重要的影响。本文将详细解析HashMap的底层数据结构,帮助开发者更好地理解和使用这一强大的工具。
29 7
|
25天前
|
存储 Java Serverless
HashMap的底层数据结构
HashMap作为Java中一个核心的数据结构,以其高效的键值对存储和检索能力而被广泛使用。本文将深入探讨HashMap的底层数据结构,揭示其如何通过精巧的设计实现快速的数据访问。
26 6
|
24天前
|
存储 Java
HashMap的底层数据结构详解
在Java中,HashMap 是一个非常重要的集合类,用于存储键值对(Key-Value)。它提供了快速的数据插入、删除和查找功能。本文将深入探讨 HashMap 的底层数据结构,帮助读者更好地理解其工作原理。
|
1月前
|
存储 算法 安全
ConcurrentHashMap的底层实现与深度分析
【11月更文挑战第15天】在Java并发编程中,ConcurrentHashMap是一个非常重要的数据结构,它提供了一种线程安全的哈希表实现。随着Java版本的迭代,ConcurrentHashMap的实现也在不断优化,以更好地支持高并发场景。
41 4
|
2月前
|
存储 缓存 索引
从底层数据结构和CPU缓存两方面剖析LinkedList的查询效率为什么比ArrayList低
本文详细对比了ArrayList和LinkedList的查询效率,从底层数据结构和CPU缓存两个方面进行分析。ArrayList基于动态数组,支持随机访问,查询时间复杂度为O(1),且CPU缓存对其友好;而LinkedList基于双向链表,需要逐个节点遍历,查询时间复杂度为O(n),且CPU缓存对其帮助不大。文章还探讨了CPU缓存对数组增删操作的影响,指出缓存主要作用于读取而非修改。通过这些分析,加深了对这两种数据结构的理解。
47 2
|
6月前
|
存储 安全 容器
ConcurrentHashMap底层详解
ConcurrentHashMap底层详解
314 2
ConcurrentHashMap底层详解
|
7月前
|
存储 安全
ConcurrentHashMap 底层具体实现
ConcurrentHashMap 底层具体实现