Google Earth Engine ——全球1984年至2018年JRC/GSW1_1/GlobalSurfaceWater地表水数据集

简介: Google Earth Engine ——全球1984年至2018年JRC/GSW1_1/GlobalSurfaceWater地表水数据集

This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2018 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its long-term changes (Nature, 2016) and the online Data Users Guide.


These data were generated using 3,865,618 scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 31 December 2018. Each pixel was individually classified into water / non-water using an expert system and the results were collated into a monthly history for the entire time period and two epochs (1984-1999, 2000-2018) for change detection.

This mapping layers product consists of 1 image containing 7 bands. It maps different facets of the spatial and temporal distribution of surface water over the last 35 years. Areas where water has never been detected are masked.


数据集包含1984年至2018年地表水的位置和时间分布图,并提供这些水面的范围和变化的统计数据。更多信息见相关期刊文章。全球地表水及其长期变化的高分辨率地图(自然,2016)和在线数据用户指南。

这些数据是使用1984年3月16日至2018年12月31日期间获取的Landsat 5、7和8的3,865,618个场景生成的。使用专家系统将每个像素单独分类为水/非水,并将结果整理为整个时间段的月度历史和两个纪元(1984-1999,2000-2018)的变化检测。

该测绘层产品由1张包含7个波段的图像组成。它绘制了过去35年中地表水的空间和时间分布的不同方面。从未检测到水的区域被掩盖了。

Dataset Availability

1984-03-16T00:00:00 - 2019-01-01T00:00:00

Dataset Provider

EC JRC / Google

Collection Snippet

ee.Image("JRC/GSW1_1/GlobalSurfaceWater")

Resolution

30 meters

Bands Table

Name Description Min Max Units
occurrence The frequency with which water was present. 0 100 %
change_abs Absolute change in occurrence between two epochs: 1984-1999 vs 2000-2018. -100 100 %
change_norm Normalized change in occurrence. (epoch1-epoch2)/(epoch1+epoch2) * 100 -100 100 %
seasonality Number of months water is present. 0 12
recurrence The frequency with which water returns from year to year. 0 100 %
transition Categorical classification of change between first and last year.
max_extent Binary image containing 1 anywhere water has ever been detected.
max_extent Bitmask
  • Bit 0: Flag indicating if water was detected or not
    • 0: Not water
    • 1: Water


Class Table: transition

Value Color Color Value Description
0 #ffffff No change
1 #0000ff Permanent
2 #22b14c New permanent
3 #d1102d Lost permanent
4 #99d9ea Seasonal
5 #b5e61d New seasonal
6 #e6a1aa Lost seasonal
7 #ff7f27 Seasonal to permanent
8 #ffc90e Permanent to seasonal
9 #7f7f7f Ephemeral permanent
10 #c3c3c3 Ephemeral seasonal


数据使用:

All data here is produced under the Copernicus Programme and is provided free of charge, without restriction of use. For the full license information see the Copernicus Regulation.

Publications, models, and data products that make use of these datasets must include proper acknowledgement, including citing datasets and the journal article as in the following citation.

If you are using the data as a layer in a published map, please include the following attribution text: 'Source: EC JRC/Google'

引用:

Jean-Francois Pekel, Andrew Cottam, Noel Gorelick, Alan S. Belward, High-resolution mapping of global surface water and its long-term changes. Nature 540, 418-422 (2016). (doi:10.1038/nature20584)

代码:

var dataset = ee.Image('JRC/GSW1_1/GlobalSurfaceWater');
var visualization = {
  bands: ['occurrence'],
  min: 0.0,
  max: 100.0,
  palette: ['ffffff', 'ffbbbb', '0000ff']
};
Map.setCenter(59.414, 45.182, 6);
Map.addLayer(dataset, visualization, 'Occurrence');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2342 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
217 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
524 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
107 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
126 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
74 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
252 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
118 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
120 0