Google Earth Engine ——美国LANDIFRE火灾LANDFIRE FRG (Fire Regime Groups) v1.2.0数据集

简介: Google Earth Engine ——美国LANDIFRE火灾LANDFIRE FRG (Fire Regime Groups) v1.2.0数据集

LANDFIRE (LF), Landscape Fire and Resource Management Planning Tools, is a shared program between the wildland fire management programs of the U.S. Department of Agriculture's Forest Service, U.S. Department of the Interior's Geological Survey, and The Nature Conservancy.

Landfire (LF) Historical fire regimes, intervals, and vegetation conditions are mapped using the Vegetation Dynamics Development Tool (VDDT). These data support fire and landscape management planning goals in the National Cohesive Wildland Fire Management Strategy, the Federal Wildland Fire Management Policy, and the Healthy Forests Restoration Act.

Fire Regime Groups (FRG) are created by linking the Biophysical Settings (BPS) Group attribute in the BpS layer with the Refresh Model Tracker (RMT) data and assigning the FRG attribute. This geospatial product should display a reasonable approximation of FRG, as documented in the RMT. (LF 1.0.0 CONUS only used the vegetation and disturbance dynamics model LANDSUM.) FRG can be used in landscape assessments.

The LANDIFRE Fire datasets include:

  • Fire Regime Groups (FRG) is intended to characterize presumed historical fire regimes within landscapes based on interactions between vegetation dynamics, fire spread, fire effects, and spatial context
  • Mean Fire Return Interval (MFRI) quantifies the average period between fires under the presumed historical fire regime


LANDFIRE(LF),景观火灾和资源管理规划工具,是美国农业部林务局、美国内政部地质调查局和大自然保护协会的野地火灾管理项目之间的一个共享项目。

土地火灾(LF)历史上的火灾制度、间隔和植被状况是用植被动态发展工具(VDDT)绘制的。这些数据支持《国家统一野地火灾管理战略》、《联邦野地火灾管理政策》和《健康森林恢复法》中的火灾和景观管理规划目标。

火灾制度组(FRG)是通过将BpS层中的生物物理设置(BPS)组属性与刷新模型跟踪器(RMT)数据联系起来,并分配FRG属性而创建的。该地理空间产品应显示FRG的合理近似值,如RMT中记载的那样。(LF 1.0.0 CONUS只使用植被和干扰动力学模型LANDSUM)。FRG可以在景观评估中使用。

LANDIFRE火灾数据集包括。


火灾制度组(FRG)旨在根据植被动态、火灾蔓延、火灾影响和空间背景之间的相互作用,描述景观内假定的历史火灾制度的特点。

平均火灾重现间隔(MFRI)量化了假定的历史火灾制度下火灾的平均间隔时间。

Dataset Availability

2010-01-01T00:00:00 - 2010-12-31T00:00:00

Dataset Provider

U.S. Department of Agriculture's (USDA), U.S. Forest Service (USFS), U.S. Department of the Interior's Geological Survey (USGS), and The Nature Conservancy.

Collection Snippet

Copied

ee.ImageCollection("LANDFIRE/Fire/FRG/v1_2_0")

Resolution

30 meters

Bands Table

Name Description
FRG Fire Regime Groups

Class Table: FRG

Value Color Color Value Description
1 #4cc24a <= 35 Year Fire Return Interval, Low and Mixed Severity
2 #265400 <= 35 Year Fire Return Interval, Replacement Severity
3 #ffff99 35 - 200 Year Fire Return Interval, Low and Mixed Severity
4 #8400a8 35 - 200 Year Fire Return Interval, Replacement Severity
5 #ee1e00 > 200 Year Fire Return Interval, Any Severity
111 #0000ff Water
112 #c8ffff Snow / Ice
131 #4e4e4e Barren
132 #b2b2b2 Sparsely Vegetated
133 #e1e1e1 Indeterminate Fire Regime Characteri

使用和引用:

LANDFIRE data are public domain data with no use restrictions, though if modifications or derivatives of the product(s) are created, then please add some descriptive modifier to the data set to avoid confusion.

The suggested way to cite LANDFIRE products is specific to each product, so the model for citation is provided, with an example for a particular product. Producer. Year released. Product xxxxx:

  • Individual model name.
  • BpS Models and Descriptions, Online. LANDFIRE. Washington, DC. U.S. Department of Agriculture, Forest Service
  • U.S. Department of the Interior; U.S. Geological Survey; Arlington, VA
  • The Nature Conservancy (Producers). Available- URL. Access date.

Example Citation: LANDFIRE Biophysical Settings. 2018. Biophysical setting 14420: South Texas sand sheet grassland. In: LANDFIRE Biophysical Setting Model: Map zone 36, [Online]. In: BpS Models and Descriptions. In: LANDFIRE. Washington, DC: U.S. Department of Agriculture, Forest Service; U.S. Department of the Interior; U.S. Geological Survey; Arlington, VA: The Nature Conservancy (Producers). Available: https://www.landfire.gov/national_veg_models_op2.php [2018, June 27]. Additional guidance on citation of LANDFIRE products can be found here

代码:

var dataset = ee.ImageCollection('LANDFIRE/Fire/FRG/v1_2_0');
var visualization = {
  bands: ['FRG'],
};
Map.setCenter(-121.671, 40.699, 5);
Map.addLayer(dataset, visualization, 'FRG');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2341 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
217 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
524 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
107 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
126 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
74 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
252 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
116 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
120 0