万字长文详解HiveSQL执行计划 (一)

简介: Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙。

Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙。


要想学SQL执行计划,就需要学习查看执行计划的命令:explain,在查询语句的SQL前面加上关键字explain是查看执行计划的基本方法。


学会explain,能够给我们工作中使用hive带来极大的便利!


查看SQL的执行计划


Hive提供的执行计划目前可以查看的信息有以下几种:


  • explain:查看执行计划的基本信息;


  • explain dependency:dependency在explain语句中使用会产生有关计划中输入的额外信息。它显示了输入的各种属性;


  • explain authorization:查看SQL操作相关权限的信息;


  • explain vectorization:查看SQL的向量化描述信息,显示为什么未对Map和Reduce进行矢量化。从 Hive 2.3.0 开始支持;


  • explain analyze:用实际的行数注释计划。从 Hive 2.2.0 开始支持;


  • explain cbo:输出由Calcite优化器生成的计划。CBO 从 Hive 4.0.0 版本开始支持;


  • explain locks:这对于了解系统将获得哪些锁以运行指定的查询很有用。LOCKS 从 Hive 3.2.0 开始支持;


  • explain ast:输出查询的抽象语法树。AST 在 Hive 2.1.0 版本删除了,存在bug,转储AST可能会导致OOM错误,将在4.0.0版本修复;


  • explain extended:加上 extended 可以输出有关计划的额外信息。这通常是物理信息,例如文件名,这些额外信息对我们用处不大;


1. explain 的用法


Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。


使用语法如下:


explain query;


在 hive cli 中输入以下命令(hive 2.3.7):


explain select sum(id) from test1;


得到结果:


STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1
STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: test1
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: id (type: int)
              outputColumnNames: id
              Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: sum(id)
                mode: hash
                outputColumnNames: _col0
                Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  sort order:
                  Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col0 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: sum(VALUE._col0)
          mode: mergepartial
          outputColumnNames: _col0
          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
          File Output Operator
            compressed: false
            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink


看完以上内容有什么感受,是不是感觉都看不懂,不要着急,下面将会详细讲解每个参数,相信你学完下面的内容之后再看 explain 的查询结果将游刃有余。


一个HIVE查询被转换为一个由一个或多个stage组成的序列(有向无环图DAG)。这些stage可以是MapReduce stage,也可以是负责元数据存储的stage,也可以是负责文件系统的操作(比如移动和重命名)的stage。


我们将上述结果拆分看,先从最外层开始,包含两个大的部分:


  1. stage dependencies: 各个stage之间的依赖性
  2. stage plan: 各个stage的执行计划


先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。


再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:


  1. Map Operator Tree: MAP端的执行计划树
  2. Reduce Operator Tree: Reduce端的执行计划树


这两个执行计划树里面包含这条sql语句的 operator:


  1. TableScan:表扫描操作,map端第一个操作肯定是加载表,所以就是表扫描操作,常见的属性:


  • alias: 表名称
  • Statistics: 表统计信息,包含表中数据条数,数据大小等


  1. Select Operator: 选取操作,常见的属性 :


  • expressions:需要的字段名称及字段类型
  • outputColumnNames:输出的列名称
  • Statistics:表统计信息,包含表中数据条数,数据大小等


  1. Group By Operator:分组聚合操作,常见的属性:


  • aggregations:显示聚合函数信息
  • mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合
  • keys:分组的字段,如果没有分组,则没有此字段
  • outputColumnNames:聚合之后输出列名
  • Statistics: 表统计信息,包含分组聚合之后的数据条数,数据大小等


  1. Reduce Output Operator:输出到reduce操作,常见属性:


  • sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +- 排序的列为两列,第一列为正序,第二列为倒序


  1. Filter Operator:过滤操作,常见的属性:


  • predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)


  1. Map Join Operator:join 操作,常见的属性:


  • condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2
  • keys: join 的条件字段
  • outputColumnNames: join 完成之后输出的字段
  • Statistics: join 完成之后生成的数据条数,大小等


  1. File Output Operator:文件输出操作,常见的属性


  • compressed:是否压缩
  • table:表的信息,包含输入输出文件格式化方式,序列化方式等


  1. Fetch Operator 客户端获取数据操作,常见的属性:


  • limit,值为 -1 表示不限制条数,其他值为限制的条数


2. explain 的使用场景


本节介绍 explain 能够为我们在生产实践中带来哪些便利及解决我们哪些迷惑


案例一:join 语句会过滤 null 的值吗?


现在,我们在hive cli 输入以下查询计划语句


select a.id,b.user_name from test1 a join test2 b on a.id=b.id;


问:上面这条 join 语句会过滤 id 为 null 的值吗


执行下面语句:


explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id;


我们来看结果 (为了适应页面展示,仅截取了部分输出信息):


TableScan
 alias: a
 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
 Filter Operator
    predicate: id is not null (type: boolean)
    Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
    Select Operator
        expressions: id (type: int)
        outputColumnNames: _col0
        Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
        HashTable Sink Operator
           keys:
             0 _col0 (type: int)
             1 _col0 (type: int)
 ...


从上述结果可以看到 predicate: id is not null 这样一行,说明 join 时会自动过滤掉关联字段为 null


值的情况,但 left join 或 full join 是不会自动过滤null值的,大家可以自行尝试下。

相关文章
|
存储 编译器 数据安全/隐私保护
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】(上)
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】(下)
移动导出表,移动重定位表【滴水逆向三期51笔记+作业源码】
|
存储 算法 搜索推荐
MySQL:排序(filesort)详细解析(8000字长文1)
MySQL:排序(filesort)详细解析(8000字长文)
MySQL:排序(filesort)详细解析(8000字长文1)
|
SQL 存储 缓存
字节三面:详解一条 SQL 的执行过程
天天和数据库打交道,一天能写上几十条 SQL 语句,但你知道我们的系统是如何和数据库交互的吗?MySQL 如何帮我们存储数据、又是如何帮我们管理事务?
134 0
|
SQL 存储 JSON
万字长文详解HiveSQL执行计划(二)
万字长文详解HiveSQL执行计划
351 0
万字长文详解HiveSQL执行计划(二)
|
关系型数据库 MySQL 数据库
【MySQL作业】多字段分组和 having 子句——美和易思分组查询应用习题
【MySQL作业】多字段分组和 having 子句——美和易思分组查询应用习题
138 0
【MySQL作业】多字段分组和 having 子句——美和易思分组查询应用习题
|
SQL 存储 JSON
最强最全面的Hive SQL开发指南,超四万字全面解析 (一)
本文整体分为两部分,第一部分是简写,如果能看懂会用,就直接从此部分查,方便快捷,如果不是很理解此SQL的用法,则查看第二部分,是详细说明,当然第二部分语句也会更全一些!
1598 0
|
存储 算法 NoSQL
MySQL:排序(filesort)详细解析(8000字长文2)
MySQL:排序(filesort)详细解析(8000字长文)
|
SQL HIVE 开发者
万字长文详解HiveSQL执行计划 (二)
Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙。
155 0