Flink 中极其重要的 Time 与 Window 详细解析(深度好文,建议收藏) (一)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Flink 中极其重要的 Time 与 Window 详细解析

前言


Flink 是流式的、实时的 计算引擎


上面一句话就有两个概念,一个是流式,一个是实时。


流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以这里面就有一个问题,边界怎么确定? 无非就两种方式,根据时间段或者数据量进行确定,根据时间段就是每隔多长时间就划分一个边界,根据数据量就是每来多少条数据划分一个边界,Flink 中就是这么划分边界的,本文会详细讲解。


实时:就是数据发送过来之后立马就进行相关的计算,然后将结果输出。这里的计算有两种:


  • 一种是只有边界内的数据进行计算,这种好理解,比如统计每个用户最近五分钟内浏览的新闻数量,就可以取最近五分钟内的所有数据,然后根据每个用户分组,统计新闻的总数。


  • 另一种是边界内数据与外部数据进行关联计算,比如:统计最近五分钟内浏览新闻的用户都是来自哪些地区,这种就需要将五分钟内浏览新闻的用户信息与 hive 中的地区维表进行关联,然后在进行相关计算。


本篇文章所讲的 Flink 的内容就是围绕以上概念进行详细剖析的!


Time与Window


Time


在Flink中,如果以时间段划分边界的话,那么时间就是一个极其重要的字段。


Flink中的时间有三种类型,如下图所示:


image.png


  • Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。


  • Ingestion Time:是数据进入Flink的时间。


  • Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。


例如,一条日志进入Flink的时间为2021-01-22 10:00:00.123,到达Window的系统时间为2021-01-22 10:00:01.234,日志的内容如下:


2021-01-06 18:37:15.624 INFO Fail over to rm2


对于业务来说,要统计1min内的故障日志个数,哪个时间是最有意义的?—— eventTime,因为我们要根据日志的生成时间进行统计。


Window


Window,即窗口,我们前面一直提到的边界就是这里的Window(窗口)。


官方解释:流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。


所以Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作。


Window类型


本文刚开始提到,划分窗口就两种方式:


  1. 根据时间进行截取(time-driven-window),比如每1分钟统计一次或每10分钟统计一次。


  1. 根据数据进行截取(data-driven-window),比如每5个数据统计一次或每50个数据统计一次。


image.png


对于TimeWindow(根据时间划分窗口), 可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。


  1. 滚动窗口(Tumbling Windows)


将数据依据固定的窗口长度对数据进行切片。


特点:时间对齐,窗口长度固定,没有重叠。


滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。


例如:如果你指定了一个5分钟大小的滚动窗口,窗口的创建如下图所示:


image.png


适用场景:适合做BI统计等(做每个时间段的聚合计算)。


  1. 滑动窗口(Sliding Windows)


滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。


特点:时间对齐,窗口长度固定,有重叠。


滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。


例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,如下图所示:


image.png


适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。


  1. 会话窗口(Session Windows)


由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。


特点:时间无对齐。


session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。


image.png


Window API


TimeWindow


TimeWindow是将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算(就是本文开头说的对一个边界内的数据进行计算)。


我们以 红绿灯路口通过的汽车数量 为例子:


红绿灯路口会有汽车通过,一共会有多少汽车通过,无法计算。因为车流源源不断,计算没有边界。


所以我们统计每15秒钟通过红路灯的汽车数量,如第一个15秒为2辆,第二个15秒为3辆,第三个15秒为1辆 ...


  • tumbling-time-window (无重叠数据)


我们使用 Linux 中的 nc 命令模拟数据的发送方


1.开启发送端口,端口号为9999
nc -lk 9999
2.发送内容(key 代表不同的路口,value 代表每次通过的车辆)
一次发送一行,发送的时间间隔代表汽车经过的时间间隔
9,3
9,2
9,7
4,9
2,6
1,5
2,3
5,7
5,4


Flink 进行采集数据并计算:


object Window {
  def main(args: Array[String]): Unit = {
    //TODO time-window
    //1.创建运行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //2.定义数据流来源
    val text = env.socketTextStream("localhost", 9999)
    //3.转换数据格式,text->CarWc
    case class CarWc(sensorId: Int, carCnt: Int)
    val ds1: DataStream[CarWc] = text.map {
      line => {
        val tokens = line.split(",")
        CarWc(tokens(0).trim.toInt, tokens(1).trim.toInt)
      }
    }
    //4.执行统计操作,每个sensorId一个tumbling窗口,窗口的大小为5秒
    //也就是说,每5秒钟统计一次,在这过去的5秒钟内,各个路口通过红绿灯汽车的数量。
    val ds2: DataStream[CarWc] = ds1
      .keyBy("sensorId")
      .timeWindow(Time.seconds(5))
      .sum("carCnt")
    //5.显示统计结果
    ds2.print()
    //6.触发流计算
    env.execute(this.getClass.getName)
  }
}


我们发送的数据并没有指定时间字段,所以Flink使用的是默认的 Processing Time,也就是Flink系统处理数据时的时间。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
182 3
|
1月前
|
缓存 监控 数据处理
Flink 四大基石之窗口(Window)使用详解
在流处理场景中,窗口(Window)用于将无限数据流切分成有限大小的“块”,以便进行计算。Flink 提供了多种窗口类型,如时间窗口(滚动、滑动、会话)和计数窗口,通过窗口大小、滑动步长和偏移量等属性控制数据切分。窗口函数包括增量聚合函数、全窗口函数和ProcessWindowFunction,支持灵活的数据处理。应用案例展示了如何使用窗口进行实时流量统计和电商销售分析。
273 28
|
4月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
134 0
|
4月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
242 0
|
2月前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
127 16
|
4月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
63 0
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
140 2
|
1天前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

热门文章

最新文章

推荐镜像

更多