业界盘点|为什么推荐算法都开始结合图神经网络了?(一)

简介: 业界盘点|为什么推荐算法都开始结合图神经网络了?(一)

大家好,我是对白。


图神经网络(GNN)相信大家也不陌生了,在还没有Graph Embedding之前,节点的属性信息可以通过Item2vec这种序列化Embedding的方式去学习,效果虽然不错,但它忽略了节点的结构信息。而GNN能够自然地整合节点属性信息和拓扑结构信息,因此在许多领域广泛应用。


在推荐系统中,目前的主要挑战是从用户-物品交互以及辅助信息中学习有效的User-Item Embedding。由于大部分的信息本质上都是图结构,并且GNN在表示学习方面具有先天优势,因此在推荐系统中蓬勃发展。


本文对基于GNN的推荐算法进行了总结,汇总了从2018至2020年期间工业界和学术界比较有代表性的29个基于的GNN推荐模型****。此外,我从近三年KDD的论文中挑选了六篇值得一读的GNN推荐模型为大家解读,分别是4篇阿里的论文,1篇滴滴的论文和1篇亚马逊的论文,话不多说,让我们一起欣赏一下GNN在推荐系统中的花式玩法吧~


41.png


基于图神经网络的推荐算法分类


564f542c160a8b72d939c1800c574915.png


基于图神经网络的推荐模型总结


b482bde22f681daea81fa0dee7ace07a.png


1 General Recommendation


1.1 General RS without side information


620e58724f31dd7df162d19d308e05bd.png


Neighbor Aggregation:区分邻居的影响大小,比mean-pooling,degree normalization效果好


Information Update:当后续没有显式的特征交叉步骤时,mean pooling, sum pooling表现足够好,若有,则concat能保留更多信息


Final Node representation:有些使用GNN的最后一层向量作为表示,有些则用所有层(可能表示更好一些)


1.2 General RS with social network


f3f891f7cba04906a68c54c08349afea (1).png


Influence modeling:区分社交网络不同的好友的影响力可以提升效果,进一步的,考虑朋友在不同的Item上的影响力也不一样,可以在item稀疏时提升较大


**Preference Integration:**将social network 和user-item bipartite 两个图分开建模和统一建模都可,没有明显区别。


1.3 General RS with knowledge graph


adf4242c971f38013691796da2c149cb.png


Graph simplification:为了将GNN较为高效地应用于KG,需要对图进行简化(同时图信息有损),例如AKGE利用最短路径来重构子图,IntentGC仅保留一部分结点来构造i2i和u2u


Multi-relation propagation:KG有多重类型的边,因此需要使用attention 机制来聚集来自邻居的信息


User intergration:有些工作利用GNN来学习item表示,假设用户具有静态的表示;另外的则将user作为KG中一种entity来学习


2 Sequential recommendation


2.1 SR without side information


4e1aaa8f4da36ac6e32db890286e4205.png


Graph construction:将sequence 转为graph,转化的方法决定了GNN的效果,一般将按时序出现的相邻K(一般K=2)个item之间进行连边


Information propagation:在聚集邻居特征时,相比mean-pooling, GRU在序列建模中效果更好一些


Sequential preference:将序列的结点表示集成为最终的结点表示,attention, GRU皆可


2.2 SR with social network


DGRec:使用LSTM来抽取用户的动态兴趣,再使用GAT来对不同好友的影响进行聚集


相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
130 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
350 55
|
12天前
|
算法 安全 大数据
【算法合规新时代】企业如何把握“清朗·网络平台算法典型问题治理”专项行动?
在数字化时代,算法推动社会发展,但也带来了信息茧房、大数据杀熟等问题。中央网信办发布《关于开展“清朗·网络平台算法典型问题治理”专项行动的通知》,针对六大算法问题进行整治,明确企业需落实算法安全主体责任,建立健全审核与管理制度,并对算法进行全面审查和备案。企业应积极自查自纠,确保算法合规透明,防范风险,迎接新机遇。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
207 80
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
211 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。

热门文章

最新文章