☆打卡算法☆LeetCode 87、扰乱字符串 算法解析

简介: “给定一个规则,将字符串s扰乱得到字符串s。”

一、题目


1、算法题目

“给定一个规则,将字符串s扰乱得到字符串s。”

题目链接:

来源:力扣(LeetCode)

链接:87. 扰乱字符串 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

使用下面描述的算法可以扰乱字符串 s 得到字符串 t :

  • 如果字符串的长度为 1 ,算法停止
  • 如果字符串的长度 > 1 ,执行下述步骤:
  • 在一个随机下标处将字符串分割成两个非空的子字符串。即,如果已知字符串 s ,则可以将其分成两个子字符串 x 和 y ,且满足 s = x + y 。
  • 随机 决定是要「交换两个子字符串」还是要「保持这两个子字符串的顺序不变」。即,在执行这一步骤之后,s 可能是 s = x + y 或者 s = y + x 。
  • 在 x 和 y 这两个子字符串上继续从步骤 1 开始递归执行此算法。

给你两个 长度相等 的字符串 s1 和 s2,判断 s2 是否是 s1 的扰乱字符串。如果是,返回 true ;否则,返回 false 。

来源:力扣(LeetCode) 链接:leetcode-cn.com/problems/sc…著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

示例 1:
输入:s1 = "great", s2 = "rgeat"
输出:true
解释:s1 上可能发生的一种情形是:
"great" --> "gr/eat" // 在一个随机下标处分割得到两个子字符串
"gr/eat" --> "gr/eat" // 随机决定:「保持这两个子字符串的顺序不变」
"gr/eat" --> "g/r / e/at" // 在子字符串上递归执行此算法。两个子字符串分别在随机下标处进行一轮分割
"g/r / e/at" --> "r/g / e/at" // 随机决定:第一组「交换两个子字符串」,第二组「保持这两个子字符串的顺序不变」
"r/g / e/at" --> "r/g / e/ a/t" // 继续递归执行此算法,将 "at" 分割得到 "a/t"
"r/g / e/ a/t" --> "r/g / e/ a/t" // 随机决定:「保持这两个子字符串的顺序不变」
算法终止,结果字符串和 s2 相同,都是 "rgeat"
这是一种能够扰乱 s1 得到 s2 的情形,可以认为 s2 是 s1 的扰乱字符串,返回 true
复制代码
示例 2:
输入: s1 = "abcde", s2 = "caebd"
输出: false
复制代码


二、解题


1、思路分析

这道题根据题意判断,扰乱字符串的关系是具有对称性的,即如果字符串s得到扰乱字符串t,那么s也是t的扰乱字符串,这种情况是属于相似的。

这时候就有两种情况:

  • t和s长度不一样,必定不能转化而来,返回false。
  • 长度一样,判断两个字符串是否是互为扰乱字符串,是返回true,不是返回false。


2、代码实现

代码参考:

class Solution {
    // 记忆化搜索存储状态的数组
    // -1 表示 false,1 表示 true,0 表示未计算
    int[][][] memo;
    String s1, s2;
    public boolean isScramble(String s1, String s2) {
        int length = s1.length();
        this.memo = new int[length][length][length + 1];
        this.s1 = s1;
        this.s2 = s2;
        return dfs(0, 0, length);
    }
    // 第一个字符串从 i1 开始,第二个字符串从 i2 开始,子串的长度为 length,是否和谐
    public boolean dfs(int i1, int i2, int length) {
        if (memo[i1][i2][length] != 0) {
            return memo[i1][i2][length] == 1;
        }
        // 判断两个子串是否相等
        if (s1.substring(i1, i1 + length).equals(s2.substring(i2, i2 + length))) {
            memo[i1][i2][length] = 1;
            return true;
        }
        // 判断是否存在字符 c 在两个子串中出现的次数不同
        if (!checkIfSimilar(i1, i2, length)) {
            memo[i1][i2][length] = -1;
            return false;
        }
        // 枚举分割位置
        for (int i = 1; i < length; ++i) {
            // 不交换的情况
            if (dfs(i1, i2, i) && dfs(i1 + i, i2 + i, length - i)) {
                memo[i1][i2][length] = 1;
                return true;
            }
            // 交换的情况
            if (dfs(i1, i2 + length - i, i) && dfs(i1 + i, i2, length - i)) {
                memo[i1][i2][length] = 1;
                return true;
            }
        }
        memo[i1][i2][length] = -1;
        return false;
    }
    public boolean checkIfSimilar(int i1, int i2, int length) {
        Map<Character, Integer> freq = new HashMap<Character, Integer>();
        for (int i = i1; i < i1 + length; ++i) {
            char c = s1.charAt(i);
            freq.put(c, freq.getOrDefault(c, 0) + 1);
        }
        for (int i = i2; i < i2 + length; ++i) {
            char c = s2.charAt(i);
            freq.put(c, freq.getOrDefault(c, 0) - 1);
        }
        for (Map.Entry<Character, Integer> entry : freq.entrySet()) {
            int value = entry.getValue();
            if (value != 0) {
                return false;
            }
        }
        return true;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n4)

其中n是给定原始字符串的长度。

空间复杂度: O(n3))

存储所有状态需要的空间。


三、总结

这道题的解法是将大问题分解成小问题。

大问题:如何判断两个字符串是否是扰乱字符串

首先,判断长度,长度不一致就肯定返回false。

在长度一致的时候再去分割字符串去判断字符串中的元素的是否一致,这样一来就将大问题分解成规模更小的子问题。

然后使用动态规划去解题。



相关文章
|
5月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
216 15
|
5月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
343 90
|
4月前
|
存储 算法 Go
【LeetCode 热题100】17:电话号码的字母组合(详细解析)(Go语言版)
LeetCode 17题解题思路采用回溯算法,通过递归构建所有可能的组合。关键点包括:每位数字对应多个字母,依次尝试;递归构建下一个字符;递归出口为组合长度等于输入数字长度。Go语言实现中,使用map存储数字到字母的映射,通过回溯函数递归生成组合。时间复杂度为O(3^n * 4^m),空间复杂度为O(n)。类似题目包括括号生成、组合、全排列等。掌握回溯法的核心思想,能够解决多种排列组合问题。
128 11
|
4月前
|
Go
【LeetCode 热题100】155:最小栈(详细解析)(Go语言版)
本文详细解析了力扣热题155:最小栈的解题思路与实现方法。题目要求设计一个支持 push、核心思路是使用辅助栈法,通过两个栈(主栈和辅助栈)来维护当前栈中的最小值。具体操作包括:push 时同步更新辅助栈,pop 时检查是否需要弹出辅助栈的栈顶,getMin 时直接返回辅助栈的栈顶。文章还提供了 Go 语言的实现代码,并对复杂度进行了分析。此外,还介绍了单栈 + 差值记录法的进阶思路,并总结了常见易错点,如 pop 操作时忘记同步弹出辅助栈等。
144 6
|
4月前
|
Go 索引
【LeetCode 热题100】739:每日温度(详细解析)(Go语言版)
这篇文章详细解析了 LeetCode 第 739 题“每日温度”,探讨了如何通过单调栈高效解决问题。题目要求根据每日温度数组,计算出等待更高温度的天数。文中推荐使用单调递减栈,时间复杂度为 O(n),优于暴力解法的 O(n²)。通过实例模拟和代码实现(如 Go 语言版本),清晰展示了栈的操作逻辑。此外,还提供了思维拓展及相关题目推荐,帮助深入理解单调栈的应用场景。
148 6
|
5月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
264 10
|
5月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
278 9
|
5月前
|
算法 Go
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
144 9
|
5月前
|
算法 Go
【LeetCode 热题100】23:合并 K 个升序链表(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 23——合并 K 个升序链表的两种解法:优先队列(最小堆)和分治合并。题目要求将多个已排序链表合并为一个升序链表。最小堆方法通过维护节点优先级快速选择最小值,;分治合并则采用归并思想两两合并链表。文章提供了 Go 语言实现代码,并对比分析两种方法的适用场景,帮助读者深入理解链表操作与算法设计。
188 10
|
6月前
|
存储 自然语言处理 算法
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
190 14

热门文章

最新文章

推荐镜像

更多
  • DNS