☆打卡算法☆LeetCode 32、最长有效括号 算法解析

简介: “给定一个字符串,找出最长有效的字符串的长度。”

一、题目


1、算法题目

“给定一个字符串,找出最长有效的字符串的长度。”

题目链接:

来源:力扣(LeetCode)

链接:32. 最长有效括号 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给你一个只包含 '('')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1:
输入: s = "(()"
输出: 2
解释: 最长有效括号子串是 "()"
复制代码
示例 2:
输入: s = ")()())"
输出: 4
解释: 最长有效括号子串是 "()()"
复制代码


二、解题


1、思路分析

这个题可以使用动态规划思路解题。

定义dp[i]表示以下标i字符结束的最长有效字符串长度,因此左括号在dp中的值必定为0,那么只需要知道右括号在dp数组中的位置。

遍历字符串求解dp值,每两个字符检查一次,如果倒数第二个 ‘)’ 是一个有效子字符串的一部分(记作 subs ),对于最后一个 ‘)’ ,如果它是一个更长子字符串的一部分,那么它一定有一个对应的 ‘(’ ,且它的位置在倒数第二个 ‘)’ 所在的有效子字符串的前面(也就是 subs  的前面)。因此,如果子字符串 subs  的前面恰好是 ‘(’ ,那么我们就用 2 加上 subs  的长度(dp[i−1])去更新 dp[i]。同时,我们也会把有效子串 “(subs )” 之前的有效子串的长度也加上,也就是再加上 dp[i−dp[i−1]−2]。

最后的答案即为 dp 数组中的最大值。

2、代码实现

代码参考:

public class Solution {
    public int LongestValidParentheses(string s) {
            int left = 0, right = 0, ans = 0;
            int n = s.Length;
            for (int i = 0; i < n; i++)
            {
                if (s[i] == '(')
                    left++;
                else
                    right++;
                if (left == right)
                    ans = Math.Max(ans, right);
                else if (right > left)
                    left = right = 0;
            }
            left = right = 0;
            for (int i = n-1; i >=0; i--)
            {
                if (s[i] == '(')
                    left++;
                else
                    right++;
                if (left == right)
                    ans = Math.Max(ans, left);
                else if (left > right)
                    left = right = 0;
            }
            return ans * 2;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n为字符串的长度,只需要遍历一遍字符串即可求出dp数组。

空间复杂度: O(n)

我们需要一个大小为n的dp数组。


三、总结

这道题很适合用动态规划来解题,因为有最长这个字眼,用动态规划解这道题,需要先确定状态。

然后根据状态转移方程,根据初始条件和边界去实现过程。

需要注意的是计算顺序。



相关文章
|
8月前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
920 14
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
6月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
388 90
|
4月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
120 0
|
7月前
|
存储 自然语言处理 算法
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
203 14
|
7月前
|
监控 算法 安全
基于 C# 的内网行为管理软件入侵检测算法解析
当下数字化办公环境中,内网行为管理软件已成为企业维护网络安全、提高办公效率的关键工具。它宛如一位恪尽职守的网络守护者,持续监控内网中的各类活动,以确保数据安全及网络稳定。在其诸多功能实现的背后,先进的数据结构与算法发挥着至关重要的作用。本文将深入探究一种应用于内网行为管理软件的 C# 算法 —— 基于二叉搜索树的入侵检测算法,并借助具体代码例程予以解析。
122 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
102 7
|
8月前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
172 10
|
8月前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
9月前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
142 17

热门文章

最新文章

推荐镜像

更多
  • DNS