每天一个知识点(八)redis和mysql数据不一致问题如何解决?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 在高并发的情况下,如果所有的数据都从数据库中去读取,那再强大的数据库系统都承受不了这个压力,因此我们会将部分数据放入缓存中,比如放入redis中。这是典型的用空间换时间的方式。但是这个redis相当于是真实数据的一个副本,这就意味着如果数据库中数据发生变化的时候,就会导致缓存数据不一致的问题。归根结底,只要有两份数据存在,数据一致性问题就是不可避免的。

微信搜索《Java鱼仔》,每天一个知识点不错过


(一)每天一个知识点


redis和mysql数据不一致问题如何解决?


(二)解决思路


要解决缓存数据不一致的问题,首先要理解为什么缓存和数据库会存在不一致的情况。


(2.1)什么情况下缓存和数据库会不一致


在高并发的情况下,如果所有的数据都从数据库中去读取,那再强大的数据库系统都承受不了这个压力,因此我们会将部分数据放入缓存中,比如放入redis中。这是典型的用空间换时间的方式。


但是这个redis相当于是真实数据的一个副本,这就意味着如果数据库中数据发生变化的时候,就会导致缓存数据不一致的问题。


归根结底,只要有两份数据存在,数据一致性问题就是不可避免的。


(2.2)解决方法一:数据实时更新


当更新数据库的时候,同步更新缓存。


优点:数据一致性强,不会出现缓存雪崩的问题。


缺点:代码耦合度高,影响正常业务,增加一次网络开销。


适用环境:适用于数据一致性要求高的场景,比如银行业务,证券交易等


(2.3)解决方法二:数据准实时更新


当更新数据库的同时,异步去更新缓存,比如更新数据库后把一条消息发送到mq中去实现。


优点:与业务解耦,不影响正常业务,不会出现缓存雪崩。


缺点:有较短的延迟,并且无法保证最终的一致性,需要补偿机制。


适用环境:写操作不频繁并且实时性要求不严格的场景。


(2.4)解决方法三:缓存失效机制


基于缓存本身的失效机制,具体实现方式为设置缓存失效时间,如果有缓存就从缓存中取数据,如果没缓存就从数据库中取数据,并且重新设置缓存。


优点:实现方式简单,与业务完美解耦,不影响正常业务。


缺点:有一定延迟,并且存在缓存雪崩的情况。


适用环境:适合读多写少的互联网环境,能接受一定的数据延时。


(2.5)解决方法四:定时任务更新


通过定时任务,按照一定时间间隔更新缓存。


优点:不影响正常业务,在特殊场景应用广泛。


缺点:不保证实时一致性,且需要为每个任务写一个调度代码。


适用环境:适用于需要复杂数据统计的缓存更新,比如展示高速车流量,五分钟一次的统计不会影响业务使用。


(三)总结


关于缓存一致性问题,需要具体场景具体分析,没有任何一种方案可以应用于所有场景,上述四种方式也并非全部实现方式。



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
相关文章
|
4月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
119 0
|
15天前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
89 10
|
4月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
275 67
|
2月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
|
5月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
251 28
|
3月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
244 0
|
4月前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
123 0
|
6月前
|
SQL 关系型数据库 MySQL
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
本文探讨了在使用YMP 23.2.1.3迁移MySQL Server字符集为latin1的中文数据至YashanDB时出现乱码的问题。问题根源在于MySQL latin1字符集存放的是实际utf8编码的数据,而YMP尚未支持此类场景。文章提供了两种解决方法:一是通过DBeaver直接迁移表数据;二是将MySQL表数据转换为Insert语句后手动插入YashanDB。同时指出,这两种方法适合单张表迁移,多表迁移可能存在兼容性问题,建议对问题表单独处理。
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
|
6月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,

推荐镜像

更多