面试宝典:数据结构-HashMap(2)

简介: 面试宝典:数据结构-HashMap(2)

image.png


没有为数组table分配内存空间(有一个入参为指定Map的构造器例外)


而是在执行put操作的时候才真正构建table数组


put函数


public V put(K key, V value) {
        //如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold,
        //此时threshold为initialCapacity 默认是1<<4(24=16)
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
       //如果key为null,存储位置为table[0]或table[0]的冲突链上
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀
        int i = indexFor(hash, table.length);//获取在table中的实际位置
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        //如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
        addEntry(hash, key, value, i);//新增一个entry
        return null;
    }


inflateTable函数


  • 用于为主干数组table在内存中分配存储空间


  • 通过roundUpToPowerOf2(toSize)可以确保capacity为大于或等于toSize的最接近toSize的二次幂,比如toSize=13,则


capacity=16;to_size=16,capacity=16;to_size=17,capacity=32.


private void inflateTable(int toSize) {
        int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂
        /**此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,
        capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1 */
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }


roundUpToPowerOf2函数


使得数组长度一定为2的次幂,Integer.highestOneBit是用来获取最左边的bit(其他bit位为0)所代表的数值.


private static int roundUpToPowerOf2(int number) {
        // assert number >= 0 : "number must be non-negative";
        return number >= MAXIMUM_CAPACITY
                ? MAXIMUM_CAPACITY
                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
    }


hash函数


  • 用了很多的异或,移位等运算


  • 对key的hashcode进一步进行计算以及二进制位的调整等来保证最终获取的存储位置尽量分布均匀


final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }
        h ^= k.hashCode();
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }


indexFor


以上hash函数计算出的值,通过indexFor进一步处理来获取实际的存储位置


/**
* 返回数组下标
*/
static int indexFor(int h, int length) {
    return h & (length-1);
}


1、h&(length-1)保证获取的index一定在数组范围内

举个例子,默认容量16,length-1=15,h=18,转换成二进制计算为index=2


2、位运算对计算机来说,性能更高一些(HashMap中有大量位运算)


image.png


addEntry函数


void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }
        createEntry(hash, key, value, bucketIndex);
    }


  • 当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容


  • 扩容时,需要新建一个长度为之前数组2倍的新的数组


  • 然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍


  • 扩容相对来说是个耗资源的操作
相关文章
|
4月前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
67 1
|
4月前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
126 2
|
1月前
|
存储 算法 Java
面试必备!一文搞懂HashMap如何优雅处理哈希冲突
大家好,我是小米,一个积极的程序员。今天聊聊Java面试中的常见问题——“HashMap是怎么解决哈希冲突的?”。通过一个小故事,我们了解到HashMap使用链地址法(JDK 1.8前)和红黑树(JDK 1.8后)来处理哈希冲突。链地址法用链表存储冲突的元素,而红黑树在链表长度超过8时启用,提升查找效率。希望这个讲解能帮助你更好地理解HashMap的工作原理。欢迎留言讨论,关注我的公众号“软件求生”,获取更多技术干货!
49 3
|
2月前
|
存储 Java 索引
HashMap高频面试题,让你掌握青铜回答与王者级回答,你值得拥有
《HashMap高频面试题,让你掌握青铜回答与王者级回答,你值得拥有》介绍了HashMap的实现原理、数据存储、哈希冲突处理及扩容机制。文章通过对比JDK 1.7和JDK 1.8版本,详细解析了不同版本中的链表与红黑树结构、Entry与Node的区别,以及put()方法的具体实现。特别指出JDK 1.8引入红黑树优化查询性能,并采用尾插法避免多线程环境下的链表环问题。负载因子和扩容机制确保了HashMap在不同场景下的高效运行。
52 2
|
3月前
|
存储 Java Serverless
HashMap的底层数据结构是怎样的
在Java中,HashMap是一种基于哈希表的Map接口实现,以其高效的数据存取能力而广泛使用。本文将深入探讨HashMap的底层数据结构,揭示其如何通过数组、链表和红黑树的结合来优化性能。
|
3月前
|
存储 Java Serverless
深入探索:HashMap的底层数据结构揭秘
HashMap作为Java中一个非常重要的集合类,其底层数据结构的设计对于性能有着至关重要的影响。本文将详细解析HashMap的底层数据结构,帮助开发者更好地理解和使用这一强大的工具。
45 7
|
3月前
|
存储 Java Serverless
HashMap的底层数据结构
HashMap作为Java中一个核心的数据结构,以其高效的键值对存储和检索能力而被广泛使用。本文将深入探讨HashMap的底层数据结构,揭示其如何通过精巧的设计实现快速的数据访问。
48 6
|
3月前
|
存储 Java
HashMap的底层数据结构详解
在Java中,HashMap 是一个非常重要的集合类,用于存储键值对(Key-Value)。它提供了快速的数据插入、删除和查找功能。本文将深入探讨 HashMap 的底层数据结构,帮助读者更好地理解其工作原理。
|
4月前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
58 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
4月前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
133 5

热门文章

最新文章