图解机器学习 | KNN算法及其应用

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: KNN算法(K近邻算法)是一种很朴实的机器学习方法,既可以做分类,也可以做回归。本文详细讲解KNN算法相关的知识,包括:核心思想、算法步骤、核心要素、缺点与改进等。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/34
本文地址http://www.showmeai.tech/article-detail/187
声明:版权所有,转载请联系平台与作者并注明出处
收藏 ShowMeAI 查看更多


引言

equation?tex=K 近邻算法(K-nearest neighbors,KNN ,有些地方也译作「equation?tex=K 近邻算法」)是一种很基本朴实的机器学习方法。

KNN 在我们日常生活中也有类似的思想应用,比如,我们判断一个人的人品,往往只需要观察他最密切的几个人的人品好坏就能得到结果了。这就是 KNN 的思想应用,KNN 方法既可以做分类,也可以做回归。在本篇内容中,我们来给大家展开讲解 KNN 相关的知识原理。

(本篇 KNN 部分内容涉及到机器学习基础知识,没有先序知识储备的宝宝可以查看ShowMeAI的文章 图解机器学习 | 机器学习基础知识

1.机器学习与分类问题

1)分类问题

分类问题是机器学习非常重要的一个组成部分,它的目标是根据已知样本的某些特征,判断一个样本属于哪个类别。分类问题可以细分如下:

KNN算法及其应用; 机器学习算法分类; 3-1


  • 二分类问题:表示分类任务中有两个类别新的样本属于哪种已知的样本类。
  • 多类分类(Multiclass classification)问题:表示分类任务中有多类别。
  • 多标签分类(Multilabel classification)问题:给每个样本一系列的目标标签。

2)分类问题的数学抽象

从算法的角度解决一个分类问题,我们的训练数据会被映射成 equation?tex=n 维空间的样本点(这里的 equation?tex=n 就是特征维度),我们需要做的事情是对 equation?tex=n 维样本空间的点进行类别区分,某些点会归属到某个类别

下图所示的是二维平面中的两类样本点,我们的模型(分类器)在学习一种区分不同类别的方法,比如这里是使用一条直线去对两类不同的样本点进行切分。

KNN算法及其应用; 机器学习算法分类; 分类问题的数学抽象; 3-2


常见的分类问题应用场景很多,我们选择几个进行举例说明:

  • 垃圾邮件识别:可以作为二分类问题,将邮件分为你「垃圾邮件」或者「正常邮件」。
  • 图像内容识别:因为图像的内容种类不止一个,图像内容可能是猫、狗、人等等,因此是多类分类问题。
  • 文本情感分析:既可以作为二分类问题,将情感分为褒贬两种,还可以作为多类分类问题,将情感种类扩展,比如分为:十分消极、消极、积极、十分积极等。

2.K近邻算法核心思想

在模式识别领域中,equation?tex=K 近邻算法( KNN 算法,又译 equation?tex=K- 最近邻算法)是一种用于分类和回归的非参数统计方法。在这两种情况下,输入包含特征空间中的 equation?tex=K 个最接近的训练样本。

1)K近邻核心思想

在 KNN 分类中,输出是一个分类族群。一个对象的分类是由其邻居的「多数表决」确定的equation?tex=K 个最近邻居( equation?tex=K 为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。

  • equation?tex=K%3D1,则该对象的类别直接由最近的一个节点赋予。
在 KNN 回归中,输出是该对象的属性值。该值是其 equation?tex=K 个最近邻居的值的平均值。

KNN算法及其应用; K近邻算法; 核心思想; 3-3


equation?tex=K 近邻居法采用向量空间模型来分类,概念为相同类别的案例,彼此的相似度高。而可以借由计算与已知类别案例之相似度,来评估未知类别案例可能的分类。

KNN 是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。 equation?tex=K- 近邻算法是所有的机器学习算法中最简单的之一。

2)豆子分类例子

想一想:下图中只有三种豆,有三个豆的种类未知,如何判定他们的种类?

KNN算法及其应用; K近邻算法; 豆子分类例子; 3-4


1968年,Cover 和 Hart 提出了最初的近邻法,思路是——未知的豆离哪种豆最近,就认为未知豆和该豆是同一种类。

KNN算法及其应用; K近邻算法; 豆子分类例子; 3-5


由此,引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据。


最近邻算法的缺陷是对噪声数据过于敏感。从图中可以得到,一个圈起来的蓝点和两个圈起来的红点到绿点的距离是相等的,根据最近邻算法,该点的形状无法判断。

为了解决这个问题,我们可以把位置样本周边的多个最近样本计算在内,扩大参与决策的样本量,以避免个别数据直接决定决策结果。

KNN算法及其应用; K近邻算法; 豆子分类例子; 3-6


引进 equation?tex=K- 近邻算法——选择未知样本一定范围内确定个数的 equation?tex=K 个样本,该 equation?tex=K 个样本大多数属于某一类型,则未知样本判定为该类型。equation?tex=K-近邻算法是最近邻算法的一个延伸

根据 equation?tex=K 近邻算法,离绿点最近的三个点中有两个是红点,一个是蓝点,红点的样本数量多于蓝点的样本数量,因此绿点的类别被判定为红点。

3.K近邻算法步骤与示例

下面的内容首先为大家梳理下 equation?tex=K 近邻算法的步骤,之后通过示例为大家展示 equation?tex=K 近邻算法的计算流程。

KNN算法及其应用; K近邻算法; 步骤与示例; 3-7

1)K近邻算法工作原理

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。
  • 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
  • 一般来说,只选择样本数据集中前 equation?tex=N 个最相似的数据。 equation?tex=K 一般不大于 equation?tex=20,最后,选择 equation?tex=K 个中出现次数最多的分类,作为新数据的分类。

2)K近邻算法参数选择

  • 如何选择一个最佳的 equation?tex=K 值取决于数据。一般情况下,在分类时较大的 equation?tex=K 值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的 equation?tex=K 值能通过各种启发式技术(见超参数优化)来获取。
  • 噪声和非相关性特征的存在,或特征尺度与它们的重要性不一致会使 equation?tex=K 近邻算法的准确性严重降低。对于选取和缩放特征来改善分类已经做了很多研究。一个普遍的做法是利用进化算法优化功能扩展,还有一种较普遍的方法是利用训练样本的互信息进行选择特征
  • 在二元(两类)分类问题中,选取 equation?tex=K 为奇数有助于避免两个分类平票的情形。在此问题下,选取最佳经验 equation?tex=K 值的方法是自助法。
说明: KNN 没有显示的训练过程,它是「懒惰学习」的代表,它在训练阶段只是把数据保存下来,训练时间开销为 equation?tex=0,等收到测试样本后进行处理。

3)K近邻算法示例

举例:以电影分类作为例子,电影题材可分为爱情片,动作片等。那么爱情片有哪些特征?动作片有哪些特征呢?也就是说给定一部电影,怎么进行分类?

这里假定将电影分为爱情片和动作片两类,如果一部电影中接吻镜头很多,打斗镜头较少,显然是属于爱情片,反之为动作片。

KNN算法及其应用; K近邻算法; 算法示例-电影分类; 3-8


有人曾根据电影中打斗动作和接吻动作数量进行评估,数据如图。给定一部电影数据 equation?tex=(18%2C90) 打斗镜头 equation?tex=18 个,接吻镜头 equation?tex=90 个,如何知道它是什么类型的呢?

现在我们按照距离的递增顺序排序,可以找到 equation?tex=K 个距离最近的电影。

KNN算法及其应用; K近邻算法; 算法示例-电影分类; 3-9


假如 equation?tex=K%3D3,那么来看排序的前 equation?tex=3 个电影的类别,都是爱情片,根据 KNN 的投票机制,我们判定这部电影属于爱情片。(这里的 equation?tex=K 是超参数,可以调整,如果取 equation?tex=K=4,那可能投票的4部电影分别是 爱情片、爱情片、爱情片、动作片,但本例中判定结果依旧为爱情片)

4.K近邻算法的缺点与改进

1)K近邻算法的优缺点

不同类别的样本点,分布在空间的不同区域。 equation?tex=K 近邻是基于空间距离较近的样本类别来进行分类,本质上是对于特征空间的划分。

KNN算法及其应用; K近邻算法; 优缺点; 3-10


  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:计算复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。

2)K近邻算法的核心要素:距离度量准则

近邻算法能用一种有效的方式隐含的计算决策边界。另外,它也可以显式的计算决策边界,以及有效率的这样做计算,使得计算复杂度是边界复杂度的函数。equation?tex=K近邻算法依赖于空间中相近的点做类别判断,判断距离远近的度量标准非常重要

距离的度量标准,对很多算法来说都是核心要素(比如无监督学习的 聚类算法 也很大程度依赖距离度量),也对其结果有很大的影响。

KNN算法及其应用; K近邻算法; 核心要素-距离度量准则; 3-11


equation?tex=Lp距离又称闵可夫斯基距离,Minkowski Distance)不是一种距离,而是一组距离的定义。

  • 参数 equation?tex=p%3D1 时为曼哈顿距离(又称L1距离程式区块距离),表示两个点在标准坐标系上的绝对轴距之和。
  • 参数 equation?tex=p%3D2 时为欧氏距离(又称L2距离欧几里得度量),是直线距离常见的两点之间或多点之间的距离表示法。
  • 参数 equation?tex=p%20%5Cto%20%5Cinfty 时,就是切比雪夫距离(各坐标数值差的最大值)。

3)K近邻算法的核心要素:K的大小

对于 KNN 算法而言,equation?tex=K 的大小取值也至关重要,如果选择较小的 equation?tex=K 值,意味着整体模型变得复杂(模型容易发生过拟合),模型学习的近似误差(approximation error)会减小,但估计误差(estimation error)会增大。

如果选择较大的 equation?tex=K 值,就意味着整体的模型变得简单,减少学习的估计误差,但缺点是学习的近似误差会增大。

在实际的应用中,一般采用一个比较小的 equation?tex=K 值。并采用交叉验证的方法,选取一个最优的 equation?tex=K 值。

4)K近邻算法的缺点与改进

(1)缺点

观察下面的例子,我们看到,对于样本 equation?tex=X,通过 KNN 算法,我们显然可以得到 equation?tex=X 应属于红色类别。但对于样本 equation?tex=Y,KNN 算法判定的结果是 equation?tex=Y 应属于蓝色类别,然而从距离上看 equation?tex=Y 和红色的批次样本点更接近。因此,原始的 KNN 算法只考虑近邻不同类别的样本数量,而忽略掉了距离。

KNN算法及其应用; K近邻算法; 缺点; 3-12


除了上述缺点,KNN 还存在如下缺点:

  • 样本库容量依赖性较强对 KNN 算法在实际应用中的限制较大:有不少类别无法提供足够的训练样本,使得 KNN 算法所需要的相对均匀的特征空间条件无法得到满足,使得识别的误差较大。
  • equation?tex=K 值的确定: KNN 算法必须指定 equation?tex=K 值,equation?tex=K 值选择不当则分类精度不能保证。

(2)改进方法

KNN算法及其应用; K近邻算法; 缺点与改进方法; 3-13


加快 KNN 算法的分类速度

  • 浓缩训练样本当训练样本集中样本数量较大时,为了减小计算开销,可以对训练样本集进行编辑处理,即从原始训练样本集中选择最优的参考子集进行 equation?tex=K 近邻寻找,从而减少训练样本的存储量和提高计算效率。
  • 加快 equation?tex=K 个最近邻的搜索速度这类方法是通过快速搜索算法,在较短时间内找到待分类样本的 equation?tex=K 个最近邻。


对训练样本库的维护

  • 对训练样本库进行维护以满足 KNN 算法的需要,包括对训练样本库中的样本进行添加或删除,采用适当的办法来保证空间的大小,如符合某种条件的样本可以加入数据库中,同时可以对数据库库中已有符合某种条件的样本进行删除。从而保证训练样本库中的样本提供 KNN 算法所需要的相对均匀的特征空间。

5.案例介绍

假如一套房子打算出租,但不知道市场价格,可以根据房子的规格(面积、房间数量、厕所数量、容纳人数等),在已有数据集中查找相似( equation?tex=K 近邻)规格的房子价格,看别人的相同或相似户型租了多少钱。

KNN算法及其应用; 案例介绍; 数据集; 3-14


分类过程:已知的数据集中,每个已出租住房都有房间数量、厕所数量、容纳人数等字段,并有对应出租价格。将预计出租房子数据与数据集中每条记录比较计算欧式距离,取出距离最小的5条记录,将其价格取平均值,可以将其看做预计出租房子的市场平均价格。


注意:

  • 最好不要将所有数据全部拿来测试,需要分出训练集和测试集,具体划分比例按数据集确定。
  • 理想情况下,数据集中每个字段取值范围都相同。但实际上这是几乎不可能的,如果计算时直接用原数数据计算,则会造成较大训练误差。所以需要对各列数据进行标准化或归一化操作,尽量减少不必要的训练误差
  • 数据集中非数值类型的字段需要转换,替换掉美元$符号和千分位逗号。

机器学习【算法】系列教程

机器学习【实战】系列教程

ShowMeAI 系列教程推荐

ShowMeAI用知识加速每一次技术成长

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
19天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
62 4
|
15天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
32 1
|
21天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
67 1
|
24天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
22天前
|
机器学习/深度学习 数据采集 算法
隧道裂纹识别:基于计算机视觉与机器学习的应用分享
隧道裂纹的自动检测通过深度学习与计算机视觉技术实现,替代了传统人工检查,提高了检测精度与效率。本文介绍了一套完整的裂纹检测流程,包括图像采集、预处理、裂纹检测与标定、后处理及结果展示,提供了图像处理与深度学习模型的基本代码框架,旨在帮助读者掌握隧道裂纹检测的实际应用方法。
|
24天前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
28天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
71 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
24天前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
34 0
|
25天前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
32 0