【C++初阶学习】C++模板初阶

简介: 【C++初阶学习】C++模板初阶

零、前言


本章主要讲解C++的模板相关的初阶知识


一、泛型编程


  • 用函数重载来实现交换变量函数:


void Swap(int& left, int& right)
{
  int temp = left;
  left = right;
  right = temp;
}
void Swap(double& left, double& right)
{
  double temp = left;
  left = right;
  right = temp;
}
void Swap(char& left, char& right)
{
  char temp = left;
  left = right;
  right = temp;
}


使用函数重载的弊端:

重载的函数仅仅只是类型不同,代码的复用率比较低,只要有新类型出现时,就需要增加对应的函数

代码的可维护性比较低,一个出错可能所有的重载均出错

引入:

C++为了解决这样的问题,采用模板让编译器根据不同的类型利用该模子来生成相对应参数需要的函数代码,而这也就是泛型编程,对于广泛的类型参数都适用


概念:

编写与类型无关的通用代码,是代码复用的一种手段,模板是泛型编程的基础


示图:模板分类


image.png


二、函数模板


1、函数模板定义及使用


  • 概念:


函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本


  • 语法:


template<typename T1, typename T2,......,typename Tn>
返回值类型 函数名(参数列表){}  


  • 示例:


template<typename T>
void Swap(T& left, T& right)
{
  T temp = left;
  left = right;
  right = temp;
}
template<class T1,class T2>//class等同于typename
T1 Add(T1& num1, T2& num2)
{
  return num1 + num2;
}


  • 效果示图:


image.png


注:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)


2、函数模板原理


函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具,所以其实模板就是将本来应该我们做的重复的事情交给了编译器(本质是重复的工作交给了机器去完成)



image.png


说明:

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用


比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此


3、函数模板实例化


  • 概念:


用不同类型的参数使用函数模板时,称为函数模板的实例化


  • 实例化分类:


  1. 隐式实例化:让编译器根据实参推演模板参数的实际类型


  • 示例:


template<class T>
T Add(const T& left, const T& right)
{
  return left + right;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 10.0, d2 = 20.0;
  Add(a1, a2);
  Add(d1, d2);
  //Add(a1, d1);err 该语句不能通过编译
  /*
  因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
  通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
  编译器无法确定此处到底该将T确定为int 或者 double类型而报错
  注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
  */
  // 此时有两种处理方式:
  //1. 用户自己来强制转化 
  Add(a1, (int)d1);
  //2. 使用显式实例化
  Add<double>(a1, d1);
  return 0;
}


  1. 显式实例化:在函数名后的<>中指定模板参数的实际类型


  • 示例:


//在上述模板基础上
int main()
{
  int a = 10;
  double b = 20.0;
  // 显式实例化
  Add<int>(a, b);
    Add<double>(a, b);
  return 0;
}


注:如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错


4、函数模板匹配原则


  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数



  • 示例:


// 专门处理int的加法函数
int Add(int left, int right)
{
  return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
  return left + right;
}
void Test()
{
  Add(1, 2); // 与非模板函数匹配,编译器不需要特化
  Add<int>(1, 2); // 调用编译器特化的Add版本
}


  1. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板


  • 示例:


// 专门处理int的加法函数
int Add(int left, int right)
{
  return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
  return left + right;
}
void Test()
{
  Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
  Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函
}


  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


三、类模板


1、类模板定义及使用



  • 语法:



template<class T1, class T2, ..., class Tn>
class 类模板名
{
  // 类内成员定义
};


  • 示例:


// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
  Vector(size_t capacity = 10)
    : _pData(new T[capacity])
    , _size(0)
    , _capacity(capacity)
  {}
  // 使用析构函数演示:在类中声明,在类外定义。
  ~Vector();
  void PushBack(const T& data);
  void PopBack();
    // ...
  size_t Size() 
  { 
    return _size; 
  }
  T& operator[](size_t pos)
  {
    assert(pos < _size);
    return _pData[pos];
  }
private:
  T* _pData;
  size_t _size;
  size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
  if (_pData)
  delete[] _pData;
  _size = _capacity = 0;
}


2、类模板实例化


类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类


  • 示例:


// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;
相关文章
|
3月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
127 10
|
5月前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
【C++】——初识模板
|
4天前
|
C++ 开发者
C++学习之继承
通过继承,C++可以实现代码重用、扩展类的功能并支持多态性。理解继承的类型、重写与重载、多重继承及其相关问题,对于掌握C++面向对象编程至关重要。希望本文能为您的C++学习和开发提供实用的指导。
37 16
|
23天前
|
算法 网络安全 区块链
2023/11/10学习记录-C/C++对称分组加密DES
本文介绍了对称分组加密的常见算法(如DES、3DES、AES和国密SM4)及其应用场景,包括文件和视频加密、比特币私钥加密、消息和配置项加密及SSL通信加密。文章还详细展示了如何使用异或实现一个简易的对称加密算法,并通过示例代码演示了DES算法在ECB和CBC模式下的加密和解密过程,以及如何封装DES实现CBC和ECB的PKCS7Padding分块填充。
44 4
2023/11/10学习记录-C/C++对称分组加密DES
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
69 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
37 3
|
3月前
|
编译器 C语言 C++
配置C++的学习环境
【10月更文挑战第18天】如果想要学习C++语言,那就需要配置必要的环境和相关的软件,才可以帮助自己更好的掌握语法知识。 一、本地环境设置 如果您想要设置 C++ 语言环境,您需要确保电脑上有以下两款可用的软件,文本编辑器和 C++ 编译器。 二、文本编辑器 通过编辑器创建的文件通常称为源文件,源文件包含程序源代码。 C++ 程序的源文件通常使用扩展名 .cpp、.cp 或 .c。 在开始编程之前,请确保您有一个文本编辑器,且有足够的经验来编写一个计算机程序,然后把它保存在一个文件中,编译并执行它。 Visual Studio Code:虽然它是一个通用的文本编辑器,但它有很多插
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
35 0
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
24 1
|
3月前
|
存储 编译器 C++
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
58 9