系统架构面临的三大挑战,看 Kubernetes 监控如何解决?

本文涉及的产品
应用实时监控服务-应用监控,每月50GB免费额度
可观测监控 Prometheus 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 随着 Kubernetes 的不断实践落地,我们经常会遇到负载均衡、集群调度、水平扩展等问题。归根到底,这些问题背后都暴露出流量分布不均的问题。那么,我们该如何发现资源使用,解决流量分布不均问题呢?今天,我们就借助三个具体场景聊聊这一问题以及相应的解决方案。

作者|炎寻

审核&校对:白玙

编辑&排版:雯燕


大家好,我是阿里云云原生应用平台的炎寻,很高兴能与大家继续分享 Kubernetes 监控系列公开课。前两期公开课我们讲到了 Vol.1《通过 Kubernetes 监控探索应用架构,发现预期外的流量》Vol.2《如何发现 Kubernetes 中服务和工作负载的异常》


 如何使用 Kubernetes 监控的拓扑来探索应用架构,使用产品采集的监控数据配置告警来发现服务性能问题。今天我们将进行第三讲《使用 Kubernetes 监控发现资源使用,流量分布不均匀的问题》,大家可以钉钉搜索钉群 31588365,加入 Kubernetes 监控答疑群进行交流


随着 Kubernetes 的不断实践落地,我们经常会遇到越来越多问题,诸如负载均衡、集群调度、水平扩展等问题。归根到底,这些问题背后都暴露出流量分布不均的问题。那么,我们该如何发现资源使用,解决流量分布不均问题呢?今天,我们就借助三个具体场景聊聊这一问题以及相应的解决方案。


系统架构面临的挑战一:负载均衡


b8ccd379513243be8c33ea1dce439590.png


通常来说,对于一个业务系统,架构会有很多层,每层包含很多组件,比如服务接入、中间件、存储,我们希望每个组件的负载都是均衡的,这样性能和稳定性都是最高的,但在多语言多通信协议场景下,快速发现以下问题具备一定难度,比如:


  • 应用服务器处理的请求是否均匀?
  • 应用服务器对中间件服务实例的访问流量是否均匀?
  • 数据库各个分库分表实例读写流量是否均匀?


我们在实际工作实践中会遇到的典型场景就是负载不均衡,线上的流量转发策略或者流量转发组件自身有问题,导致应用服务各个实例接收到的请求量不均衡,部分实例处理的流量显著高于其他节点,导致这部分实例的性能相对于其他实例来说显著恶化,那么路由到这部分实例上的请求无法得到及时的响应,造成系统整体的性能和稳定性降低。


00ee0feb12384d5687416f2e4e12ee93.png


除了服务端不均匀场景之外,云上用户大多使用云服务实例,在实践中会出现应用服务各个实例处理的流量均匀,但访问云服务实例的节点出现流量不均匀,导致云服务实例整体性能和稳定性下降。通常在应用运行时整体链路梳理和特定问题节点上下游分析时,会进入该场景。


那么,我们如何快速发现问题、解决问题呢? 针对这一问题,我们可以从服务负载、请求负载这两个方面对客户端、服务端进行问题发现,判断各个组件实例服务负载和对外请求负载是否均衡。


(1)服务端负载


d30ceac421df4d789fb71cf64b1d290e.png


对于服务端负载均衡问题排查,我们需要了解服务详情,对任意特定的 Service,Deployment,DaemonSet,StatefulSet 进行更具针对性的排查。通过 Kubernetes 监控服务详情功能,我们可以看到 Pod 列表部分会列出后端的所有 Pod,在表格中我们列出了每个 Pod 在选择时间段内的请求数聚合值和请求数时序,通过对请求数一列进行排序,我们可以清楚地看到后端的流量是否均匀。

image.gif140afff257a44b15b0e1925fc8fc7249.png


(2)客户端负载


对于客户端负载均衡问题排查,Kubernetes 监控提供集群拓扑功能,对于任意特定的 Service,Deployment,DaemonSet,StatefulSet,我们都可以查看其关联的拓扑,当选定关联关系之后,点击表格化会列出所有与问题实体关联的网络拓扑,表格每一项都是应用服务节点对外请求的拓扑关系,在表格中我们会展示每一对拓扑关系在选择时间段内的请求数聚合值和请求数时序,通过对请求数一列进行排序,可以清楚地看到特定节点作为客户端对特定的服务端访问是否流量均匀。


系统架构面临的挑战二:集群调度


在 Kubernetes 集群部署场景下,将 Pod 分发到某个节点的过程称之为调度,对于每个 Pod 来说,其调度过程包含了“根据过滤条件找候选节点”以及“找最好的节点”两个步骤,“根据过滤条件找候选节点”除了根据 Pod 和 node 的污点,忍受关系来过滤节点,还有一点非常重要的就是根据资源预留的量来过滤,比如节点的 CPU 只有 1 核的预留,那么对于一个请求 2 核的 Pod 来说该节点将被过滤。“找最好的节点”除了根据 Pod 和 node 的亲和性来选择,一般是在过滤出来的节点里面选择最空闲的。


4e6db4c419f44a52870fe63d0922886e.png

基于上面的理论,我们在实践过程中经常会遇到一些问题:


  • 为什么集群资源使用率很低却无法调度 Pod?
  • 为什么部分节点资源使用率显著高于其他节点?
  • 为什么只有部分节点资源无法调度?


我们在实际工作实践中会遇到的典型场景就是资源热点问题,特定节点频繁发生 Pod 调度问题,整个集群资源利用率极低但是无法调度 Pod。如图,我们可以看到 Node1、Node2 已经调度满了 Pod,Node3 没有任何 Pod 调度上去,这个问题对跨 region 容灾高可用,整体的性能都有影响。我们通常在 Pod 调度失败会进入到该场景。


那么,我们该如何处理呢?


b2425df288bc4146a4aa48332bf5b7d8.png


对于 Pod 无法调度的问题排查,我们通常应该关注到下面三个要点:

  • 节点有 Pod 数量调度上限
  • 节点有 CPU 请求调度上限
  • 节点有内存请求调度上限

5557e70baa404d0abe58396505e500f4.png

Kubernetes 监控提供的集群节点列表展示以上三个要点。通过排序去查看各个节点是否均匀来查看资源热点问题。比如,某个节点 CPU 请求率接近 100%,那么就意味着任何对 CPU 有请求的 Pod 都无法调度到该节点上,如果说只有个别节点的 CPU 请求率接近 100%,其他节点都十分空闲,就需要检查一下该节点的资源容量和 Pod 分布,进一步排查问题。


除了节点有资源热点问题之外,容器也有资源热点问题。如图,对于一个多副本服务来说,其容器的资源使用分布也可能有资源热点问题,主要体现在 CPU 和内存使用上,CPU 在容器环境中是可压缩资源,达到上限之后只会限制,不会对容器本身生命周期造成影响,而内存在容器环境中是不可压缩资源,达到上限之后会出现 OOM,由于每个节点运行的时候虽然处理的请求量一致,但是不同请求不同参数导致的 CPU 和内存消耗可能不一样,那么这样会导致部分容器的资源出现热点,对生命周期和自动扩缩容都会造成影响。


针对容器的资源热点问题,通过理论分析,我们需要关注的要点如下:


  • CPU 是可压缩资源
  • 内存是不可压缩资源
  • Requests 用于调度
  • Limits 用于运行时资源限制隔离


d7fd6d90532242fbb8548d76426f0007.png


Kubernetes 监控在服务详情的 Pod 列表展示以上四个要点,支持排序,通过查看各个 Pod 是否均匀来查看资源热点问题,比如某个 Pod CPU 使用/请求率接近 100%,那么就意味着可能触发自动扩缩容,如果说只有个别 Pod 的 CPU 使用/请求率接近 100%,其他节点都十分空闲,就需要检查处理逻辑,进一步排查问题。


系统架构面临的挑战三:单点问题


对于单点问题而言,其本质就是高可用问题。高可用问题解法只有一个,就是冗余,多节点,多 region,多 zone,多机房,越分散越好,越冗余越好。除此之外,在流量增长,组件压力增大的情况下,系统各组件是否可以水平扩展也成为一个重要的议题。


f243220e60304ef699de869e7aae66ac.png


单点问题,应用服务只有最多 1 个节点,当该节点因为网络或者其他问题中断,无法通过重启解决时,系统崩溃,与此同时,因为只有一个节点,当流量增长超过一个节点的处理能力时,系统整体的性能表现会严重恶化,单点问题会影响系统的性能和高可用能力,针对该问题,Kubernetes监控支持查看 Service,Daemonset,StatefulSet,Deployment 的副本数,快速定位单点问题。 


通过上面的介绍我们可以看到 Kubernetes 监控可以从服务端,客户端多视角支持多语言多通信协议场景下的负载均衡问题排查,与此同时容器,节点,服务的资源热点问题排查,最后通过副本数检查和流量分析支持单点问题排查。在后续的迭代过程中,我们会将这些检查点作为场景开关,一键开启之后自动检查,报警。

目前,Kubernetes 监控免费使用中。点击阅读原文,开启 ARMS 即可使用。
Kubernetes 监控答疑钉钉群(群号:31588365)


6941b9b330fe4024854d6f0d1f3d29ea.png


往期推荐:


Vol.1:《通过 Kubernetes 监控探索应用架构,发现预期外的流量》

Vol.2:《如何发现 Kubernetes 中服务和工作负载的异常》



了解更多相关信息,请扫描下方二维码或搜索微信号(AlibabaCloud888)添加云原生小助手!获取更多相关资讯!


024076d321fe420cbbbe15e79bc681eb.png

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
人工智能 Kubernetes 数据可视化
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
本文回顾了一次关键词监测任务在容器集群中失效的全过程,分析了中转IP复用、调度节奏和异常处理等隐性风险,并提出通过解耦架构、动态IP分发和行为模拟优化采集策略,最终实现稳定高效的数据抓取与分析。
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
|
4月前
|
运维 Kubernetes Cloud Native
智联招聘 × 阿里云 ACK One:云端弹性算力颠覆传统 IDC 架构,打造春招技术新范式
在 2025 年春季招聘季的激战中,智联招聘凭借阿里云 ACK One 注册集群与弹性 ACS 算力的深度融合,成功突破传统 IDC 机房的算力瓶颈,以云上弹性架构支撑千万级用户的高并发访问,实现招聘服务效率与稳定性的双重跃升。
|
27天前
|
Kubernetes Devops API
从零到面试高手:每个 DevOps 专业人士都必须知道的 20 个 Kubernetes 架构问答
Kubernetes 是当前 DevOps、云原生和 SRE 领域的关键技能。本文总结了 20 个高频面试问题,涵盖架构组件、工作原理及核心概念,助你轻松掌握 Kubernetes 基础,提升面试与实战能力。
151 2
|
边缘计算 Kubernetes 物联网
Kubernetes 赋能边缘计算:架构解析、挑战突破与实践方案
在物联网和工业互联网快速发展的背景下,边缘计算凭借就近处理数据的优势,成为解决云计算延迟高、带宽成本高的关键技术。而 Kubernetes 凭借统一管理、容器化适配和强大生态扩展性,正逐步成为边缘计算的核心编排平台。本文系统解析 Kubernetes 适配边缘环境的架构分层、核心挑战与新兴解决方案,为企业落地边缘项目提供实践参考。
91 0
|
7月前
|
Prometheus Kubernetes 监控
Kubernetes监控:Prometheus与AlertManager结合,配置邮件告警。
完成这些步骤之后,您就拥有了一个可以用邮件通知你的Kubernetes监控解决方案了。当然,所有的这些配置都需要相互照应,还要对你的Kubernetes集群状况有深入的了解。希望这份指南能帮助你创建出适合自己场景的监控系统,让你在首次发现问题时就能做出响应。
326 22
|
11月前
|
Kubernetes Cloud Native 持续交付
容器化、Kubernetes与微服务架构的融合
容器化、Kubernetes与微服务架构的融合
358 82
|
8月前
|
Kubernetes 监控 Serverless
基于阿里云Serverless Kubernetes(ASK)的无服务器架构设计与实践
无服务器架构(Serverless Architecture)在云原生技术中备受关注,开发者只需专注于业务逻辑,无需管理服务器。阿里云Serverless Kubernetes(ASK)是基于Kubernetes的托管服务,提供极致弹性和按需付费能力。本文深入探讨如何使用ASK设计和实现无服务器架构,涵盖事件驱动、自动扩展、无状态设计、监控与日志及成本优化等方面,并通过图片处理服务案例展示具体实践,帮助构建高效可靠的无服务器应用。
|
8月前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
8月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
116 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
8月前
|
监控 Cloud Native Java
基于阿里云容器服务(ACK)的微服务架构设计与实践
本文介绍如何利用阿里云容器服务Kubernetes版(ACK)构建高可用、可扩展的微服务架构。通过电商平台案例,展示基于Java(Spring Boot)、Docker、Nacos等技术的开发、容器化、部署流程,涵盖服务注册、API网关、监控日志及性能优化实践,帮助企业实现云原生转型。

推荐镜像

更多