Python 多线程居然是 —— 假的?

简介: 不过最近有位读者提问:Python 的多线程真是假的吗?一下子点到了 Python 长期被人们喜忧参半的特性 —— GIL 上了。到底是怎么回事呢?今天我们来聊一聊。

十全十美

我们知道 Python 之所以灵活和强大,是因为它是一个解释性语言,边解释边执行,实现这种特性的标准实现叫作 CPython。

它分两步来运行 Python 程序:

  • 首先解析源代码文本,并将其编译为字节码(bytecode)[1]
  • 然后采用基于栈的解释器来运行字节码
  • 不断循环这个过程,直到程序结束或者被终止

灵活性有了,但是为了保证程序执行的稳定性,也付出了巨大的代价:

引入了 全局解释器锁GIL(global interpreter lock)[2]

以保证同一时间只有一个字节码在运行,这样就不会因为没用事先编译,而引发资源争夺和状态混乱的问题了。

看似 “十全十美” ,但,这样做,就意味着多线程执行时,会被 GIL 变为单线程,无法充分利用硬件资源。

来看代码:

import time
def gcd(pair):
    '''
    求解最大公约数
    '''
    a, b = pair
    low = min(a, b)
    for i in range(low, 0, -1):
        if a % i == 0 and b % i == 0:
            return i
    assert False, "Not reachable"
# 待求解的数据
NUMBERS = [
    (1963309, 2265973), (5948475, 2734765),
    (1876435, 4765849), (7654637, 3458496),
    (1823712, 1924928), (2387454, 5873948),
    (1239876, 2987473), (3487248, 2098437),
    (1963309, 2265973), (5948475, 2734765),
    (1876435, 4765849), (7654637, 3458496),
    (1823712, 1924928), (2387454, 5873948),
    (1239876, 2987473), (3487248, 2098437),
    (3498747, 4563758), (1298737, 2129874)
]
## 顺序求解
start = time.time()
results = list(map(gcd, NUMBERS))
end = time.time()
delta = end - start
print(f'顺序执行时间: {delta:.3f} 秒')


  • 函数 gcd 用于求解最大公约数,用来模拟一个数据操作
  • NUMBERS 为待求解的数据
  • 求解方式利用 map 方法,传入处理函数 gcd, 和待求解数据,将返回一个结果数列,最后转化为 list
  • 将执行过程的耗时计算并打印出来

在笔者的电脑上(4核,16G)执行时间为 2.043 秒。

如何换成多线程呢?


...
from concurrent.futures import ThreadPoolExecutor
...
## 多线程求解
start = time.time()
pool = ThreadPoolExecutor(max_workers=4)
results = list(pool.map(gcd, NUMBERS))
end = time.time()
delta = end - start
print(f'执行时间: {delta:.3f} 秒')
  • 这里引入了 concurrent.futures 模块中的线程池,用线程池实现起来比较方便
  • 设置线程池为 4,主要是为了和 CPU 的核数匹配
  • 线程池 pool 提供了多线程版的 map,所以参数不变


看看运行效果:

顺序执行时间: 2.045 秒
并发执行时间: 2.070 秒


0.gifimage.gif

what?

并行执行的时间竟然更长了!

连续执行多次,结果都是一样的,也就是说在 GIL 的限制下,多线程是无效的,而且因为线程调度还多损耗了些时间。


戴着镣铐跳舞

难道 Python 里的多线程真的没用吗?

其实也并不是,虽然了因为 GIL,无法实现真正意义上的多线程,但,多线程机制,还是为我们提供了两个重要的特性。


一:多线程写法可以让某些程序更好写

怎么理解呢?

如果要解决一个需要同时维护多种状态的程序,用单线程是实现是很困难的。

比如要检索一个文本文件中的数据,为了提高检索效率,可以将文件分成小的来处理,最先在那段中找到了,就结束处理过程。

用单线程的话,很难实现同时兼顾多个分段的情况,只能顺序,或者用二分法执行检索任务。

而采用多线程,可以将每个分段交给每个线程,会轮流执行,相当于同时推荐检索任务,处理起来,效率会比顺序查找大大提高。


二:处理阻塞型 I/O 任务效率更高

阻塞型 I/O 的意思是,当系统需要与文件系统(也包括网络和终端显示)交互时,由于文件系统相比于 CPU 的处理速度慢得多,所以程序会被设置为阻塞状态,即,不再被分配计算资源。

直到文件系统的结果返回,才会被激活,将有机会再次被分配计算资源。

也就是说,处于阻塞状态的程序,会一直等着。

那么如果一个程序是需要不断地从文件系统读取数据,处理后在写入,单线程话就需要等等读取后,才能处理,等待处理完才能写入,于是处理过程就成了一个个的等待。

而用多线程,当一个处理过程被阻塞之后,就会立即被 GIL 切走,将计算资源分配给其他可以执行的过程,从而提示执行效率。

有了这两个特性,就说明 Python 的多线程并非一无是处,如果能根据情况编写好,效率会大大提高,只不过对于计算密集型的任务,多线程特性爱莫能助。


曲线救国

那么有没有办法,真正的利用计算资源,而不受 GIL 的束缚呢?

当然有,而且还不止一个。

先介绍一个简单易用的方式。

回顾下前面的计算最大公约数的程序,我们用了线程池来处理,不过没用效果,而且比不用更糟糕。

这是因为这个程序是计算密集型的,主要依赖于 CPU,显然会受到 GIL 的约束。

现在我们将程序稍作修改:


...
from concurrent.futures import ProcessPoolExecutor
...
## 并行程求解
start = time.time()
pool = ProcessPoolExecutor(max_workers=4)
results = list(pool.map(gcd, NUMBERS))
end = time.time()
delta = end - start
print(f'并行执行时间: {delta:.3f} 秒')


看看效果:

顺序执行时间: 2.018 秒
并发执行时间: 2.032 秒
并行执行时间: 0.789 秒


并行执行提升了将近 3 倍!什么情况?

仔细看下,主要是将多线程中的 ThreadPoolExecutor 换成了 ProcessPoolExecutor,即进程池执行器。

在同一个进程里的 Python 程序,会受到 GIL 的限制,但不同的进程之间就不会了,因为每个进程中的 GIL 是独立的。

是不是很神奇?这里,多亏了 concurrent.futures 模块将实现进程池的复杂度封装起来了,留给我们简洁优雅的接口。

这里需要注意的是,ProcessPoolExecutor 并非万能的,它比较适合于 数据关联性低,且是 计算密集型 的场景。

如果数据关联性强,就会出现进程间 “通信” 的情况,可能使好不容易换来的性能提升化为乌有。

处理进程池,还有什么方法呢?那就是:

用 C 语言重写一遍需要提升性能的部分

不要惊愕,Python 里已经留好了针对 C 扩展的 API。

但这样做需要付出更多的代价,为此还可以借助于 SWIG[3] 以及 CLIF[4] 等工具,将 python 代码转为 C。

有兴趣的读者可以研究一下。


自强不息

了解到 Python 多线程的问题和解决方案,对于钟爱 Python 的我们,何去何从呢?

有句话用在这里很合适:

求人不如求己

哪怕再怎么厉害的工具或者武器,都无法解决所有的问题,而问题之所以能被解决,主要是因为我们的主观能动性。

对情况行分析判断,选择合适的解决方案,不就是需要我们做的么?

对于 Python 中 多线程的诟病,我们更多的是看到它阳光和美的一面,而对于需要提升速度的地方,采取合适的方式。这里简单总结一下:

  1. I/O 密集型的任务,采用 Python 的多线程完全没用问题,可以大幅度提高执行效率
  2. 对于计算密集型任务,要看数据依赖性是否低,如果低,采用 ProcessPoolExecutor 代替多线程处理,可以充分利用硬件资源
  3. 如果数据依赖性高,可以考虑将关键的地方该用 C 来实现,一方面 C 本身比 Python 更快,另一方面,C 可以之间使用更底层的多线程机制,而完全不用担心受 GIL 的影响
  4. 大部分情况下,对于只能用多线程处理的任务,不用太多考虑,之间利用 Python 的多线程机制就好了,不用考虑太多


总结

没用十全十美的解决方案,如果有,也只能是在某个具体的条件之下,就像软件工程中,没用银弹一样。

面对真实的世界,只有我们自己是可以依靠的,我们通过学习了解更多,通过实践,感受更多,通过总结复盘,收获更多,通过思考反思,解决更多。这就是我们人类不断发展前行的原动力。

为了我们美好的明天,为了人类美好的明天,加油!

比心!


参考代码

https://github.com/JustDoPython/python-examples/tree/master/taiyangxue/fake-thread

[1]

字节码: https://baike.baidu.com/item/%E5%AD%97%E8%8A%82%E7%A0%81/9953683

[2]

GIL: https://wiki.python.org/moin/GlobalInterpreterLock

[3]

SWIG: https://github.com/swig/swig

[4]

CLIF: https://github/google/clif

目录
相关文章
|
2月前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
24天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
1月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
1月前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
74 4
|
29天前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
23 0
|
29天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
61 0
|
2月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
Java Python
python知识点100篇系列(16)-python中如何获取线程的返回值
【10月更文挑战第3天】本文介绍了两种在Python中实现多线程并获取返回值的方法。第一种是通过自定义线程类继承`Thread`类,重写`run`和`join`方法来实现;第二种则是利用`concurrent.futures`库,通过`ThreadPoolExecutor`管理线程池,简化了线程管理和结果获取的过程,推荐使用。示例代码展示了这两种方法的具体实现方式。
python知识点100篇系列(16)-python中如何获取线程的返回值
|
2月前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
37 3
|
2月前
|
并行计算 安全 Java
Python 多线程并行执行详解
Python 多线程并行执行详解
77 3
下一篇
DataWorks