python入门教程 - 滑块实战

简介: `文末源码,阅读大约2.8分钟`**傻瓜式教程 - 体验滑块,提供练习场景及源码。**

文末源码,阅读大约2.8分钟

傻瓜式教程 - 体验滑块,提供练习场景及源码。


@[toc]

image

环境安装

安装python需要的依赖包

cv2 安装可以参考这里: https://javapub.blog.csdn.net/article/details/123656345

安装webdriver -> chrome

下载对应版本,放在本地 D:\anaconda3\Scripts 目录下

https://registry.npmmirror.com/binary.html?path=chromedriver

注意:测试时慢点刷,容易封IP。

源码

有问题可以留言探讨,公众号:JavaPub

对源码加了大量注释

测试网站: http://app.miit-eidc.org.cn/miitxxgk/gonggao/xxgk/queryCpParamPage?dataTag=Z&gid=U3119671&pc=303
import os
import cv2
import time
import random
import requests
import numpy as np
from PIL import Image
from io import BytesIO
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver import ActionChains
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

class CrackSlider():
    def __init__(self):
        # self.browser = webdriver.Edge()
        self.browser = webdriver.Chrome()
        self.s2 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[1]'
        self.s3 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[2]'
        self.url = 'http://app.miit-eidc.org.cn/miitxxgk/gonggao/xxgk/queryCpParamPage?dataTag=Z&gid=U3119671&pc=303'  # 测试网站
        self.wait = WebDriverWait(self.browser, 20)
        self.browser.get(self.url)

    # 保存俩张图片
    def get_img(self, target, template, xp):
        time.sleep(3)
        target_link = self.browser.find_element_by_xpath(self.s2).get_attribute("src")
        template_link = self.browser.find_element_by_xpath(self.s3).get_attribute("src")
        target_img = Image.open(BytesIO(requests.get(target_link).content))
        template_img = Image.open(BytesIO(requests.get(template_link).content))
        target_img.save(target)
        template_img.save(template)
        size_loc = target_img.size
        print('size_loc[0]-----\n')
        print(size_loc[0])
        zoom = xp / int(size_loc[0])  # 耦合像素
        print('zoom-----\n')
        print(zoom)
        return zoom

    def change_size(self, file):
        image = cv2.imread(file, 1)  # 读取图片 image_name应该是变量
        img = cv2.medianBlur(image, 5)  # 中值滤波,去除黑色边际中可能含有的噪声干扰。去噪。
        b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY)  # 调整裁剪效果,二值化处理。
        binary_image = b[1]  # 二值图--具有三通道
        binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)
        x, y = binary_image.shape
        edges_x = []
        edges_y = []
        for i in range(x):
            for j in range(y):
                if binary_image[i][j] == 255:
                    edges_x.append(i)
                    edges_y.append(j)

        left = min(edges_x)  # 左边界
        right = max(edges_x)  # 右边界
        width = right - left  # 宽度
        bottom = min(edges_y)  # 底部
        top = max(edges_y)  # 顶部
        height = top - bottom  # 高度
        pre1_picture = image[left:left + width, bottom:bottom + height]  # 图片截取
        return pre1_picture  # 返回图片数据

    # 匹配比对俩图距离
    def match(self, target, template):
        img_gray = cv2.imread(target, 0)
        img_rgb = self.change_size(template)
        template = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) # 图片格式转换为灰度图片 
        # cv2.imshow('template', template)
        # cv2.waitKey(0)
        res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) # 匹配模式,匹配图片
        run = 1

        # 使用二分法查找阈值的精确值
        L = 0
        R = 1
        while run < 20:
            run += 1
            threshold = (R + L) / 2
            if threshold < 0:
                print('Error')
                return None
            loc = np.where(res >= threshold)
            if len(loc[1]) > 1:
                L += (R - L) / 2
            elif len(loc[1]) == 1:
                break
            elif len(loc[1]) < 1:
                R -= (R - L) / 2
        res = loc[1][0]
        print('match distance-----\n')
        print(res)
        return res

    def move_to_gap(self, tracks):
        slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))
        ActionChains(self.browser).click_and_hold(slider).perform()
        #element = self.browser.find_element_by_xpath(self.s3)
        #ActionChains(self.browser).click_and_hold(on_element=element).perform()
        while tracks:
            x = tracks.pop(0)
            print('tracks.pop(0)-----\n')
            print(x)
            ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform()
            #ActionChains(self.browser).move_to_element_with_offset(to_element=element, xoffset=x, yoffset=0).perform()
            #time.sleep(0.01)
        time.sleep(0.05)
        ActionChains(self.browser).release().perform()

    def move_to_gap1(self, distance):
        distance += 46
        time.sleep(1)
        element = self.browser.find_element_by_xpath(self.s3)
        ActionChains(self.browser).click_and_hold(on_element=element).perform()
        ActionChains(self.browser).move_to_element_with_offset(to_element=element, xoffset=distance, yoffset=0).perform()
        #ActionChains(self.browser).release().perform()
        time.sleep(1.38)
        ActionChains(self.browser).release(on_element=element).perform()

    def move_to_gap2(self, distance):
        element = self.browser.find_elements_by_class_name("yidun_slider")[0]
        action = ActionChains(self.browser)
        mouse_action = action.click_and_hold(on_element=element)
        distance += 11
        distance = int(distance * 32/33)
        move_steps = int(distance/4)
        for i in range(0,move_steps):
            mouse_action.move_by_offset(4,random.randint(-5,5)).perform()
        time.sleep(0.1)
        mouse_action.release().perform()    

    # 计算出先加速、后加速的数组
    def get_tracks(self, distance, seconds, ease_func):
        distance += 20
        tracks = [0]
        offsets = [0]
        for t in np.arange(0.0, seconds, 0.1):
            ease = ease_func
            print('ease-----\n')
            print(ease)
            offset = round(ease(t / seconds) * distance)
            print('offset-----\n')
            print(offset)
            tracks.append(offset - offsets[-1])
            print('offset - offsets[-1]-----\n')
            print(offset - offsets[-1])
            offsets.append(offset)
            print('offsets-----\n')
            print(offsets)
        tracks.extend([-3, -2, -3, -2, -2, -2, -2, -1, -0, -1, -1, -1])
        return tracks
    def get_tracks1(self,distance):
        """
        根据偏移量获取移动轨迹
        :param distance: 偏移量
        :return: 移动轨迹
        """
        # 移动轨迹
        track = []
        # 当前位移
        current = 0
        # 减速阈值
        mid = distance * 4 / 5
        # 计算间隔
        t = 0.2
        # 初速度
        v = 0

        while current < distance:
            if current < mid:
                # 加速度为正 2
                a = 4
            else:
                # 加速度为负 3
                a = -3
            # 初速度 v0
            v0 = v
            # 当前速度 v = v0 + at
            v = v0 + a * t
            # 移动距离 x = v0t + 1/2 * a * t^2
            move = v0 * t + 1 / 2 * a * t * t
            # 当前位移
            current += move
            # 加入轨迹
            track.append(round(move))
        return track

    def ease_out_quart(self, x):
        res = 1 - pow(1 - x, 4)
        print('ease_out_quart-----\n')
        print(res)
        return res

# 发生意外,请留言。https://javapub.blog.csdn.net/article/details/123730597
if __name__ == '__main__':
    xp = 320  # 验证码的像素-长
    target = 'target.jpg'  # 临时保存的图片名
    template = 'template.png'  # 临时保存的图片名

    cs = CrackSlider()
    zoom = cs.get_img(target, template, xp)
    distance = cs.match(target, template)
    track = cs.get_tracks((distance + 7) * zoom, random.randint(2, 4), cs.ease_out_quart)
    #track = cs.get_tracks1(distance)
    #track = cs.get_tracks((distance + 7) * zoom, random.randint(1, 2), cs.ease_out_quart)
    cs.move_to_gap(track)
    #cs.move_to_gap1(distance)
    #cs.move_to_gap2(distance)
    time.sleep(2)
    #cs.browser.close()

同名公众号,更多工具解决方案

image

目录
相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
125 6
|
1月前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
49 10
|
2月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
213 45
|
2月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
2月前
|
并行计算 调度 开发者
探索Python中的异步编程:从基础到实战
在Python的世界里,异步编程是一种让程序运行更加高效、响应更快的技术。本文不仅会介绍异步编程的基本概念和原理,还将通过具体代码示例展示如何在Python中实现异步操作。无论你是初学者还是有经验的开发者,都能从中获益,了解如何运用这一技术优化你的项目。
|
2月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
2月前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
100 4
下一篇
开通oss服务