一、关于ORL人脸数据库
ORL是一个40个人,每人采取10张人脸头像构成的一个人脸数据库,尺寸全部为92*112。分为40个文件夹,即每个文件夹中包含有10张人脸照片,为pgm格式。
其中s41为拍好并处理好的自己人脸图像。
值得一提的是,图片为pgm格式,许多软件无法读取,但是别忘了我们的opencv可是图片处理能力十分强大的噢!如果想看下这些人脸图是怎样的,可以使用opencv的imshow函数进行读取哦……
二、添加进自己的人脸数据
上面截图中可以看出,笔者采集了自己的照片,这一步需要有几个注意点:
1.放入的图片格式不一定要pgm格式
2.放入的图片尺寸大小一定要一致(92*112)
3.图片不需要自己一张张的拍摄,可以写一段程序进行拍摄,并进行预处理达到要求, 之后放到ORL库里一起整合。
此程序拍得的照片已经将人脸处理成了92*112的大小。
三、利用已有模型进行训练
1. 一个小测试
笔者参照了不少博客大神,受益匪浅。在正式开始实践前,先做了个小测试,即用较少的人脸数据进行训练和识别测试。做小测试的时候,我是首先从ORL中选择了2个人的各自5张图片和自己的5张图片,共3个人15张人脸图片进行训练。(11-15.jpg对应的是我自己,即上图中1-5.jpg,此处人为复制出来进行命名进行小测试)
其中a1-a5对应一类(0),b1-b5对应一类(1 ),c1-c5对应一类(2),之后要做的就是将这些人脸图压进栈,即将照片(image.表示人脸图像)和标签(label表分类结果)下面以a类为例压进栈。
在之后就是模型的训练了,opencv自带的Facerecognizer类。其中有人脸识别接下来会用到的几个函数(train、load、save、predict)。
同时opencv自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。直接调用这三种算法很简单,一般都是三句话足够:
之后就可以直接测试了,以第一种模型为例:
2. 数据量较大的情况
小测试中共涉及了15张图片,即使让你人为命名写路径也不算很麻烦,可是人脸识别需要的数据往往很大,这就不可能说人为的去一张张图片的处理了。但是整体的流程和上面小测试是相同的,这里主要介绍一种csv文件的使用方法:
我们需要读取人脸和人脸对应的标签。直接在数据库中读取显然是低效的。所以我们用csv文件读取。csv文件中包含两方面的内容,一是每一张图片的位置所在,二是每一个人脸对应的标签,就是为每一个人编号。这个at.txt就是我们需要的csv文件。生成之后它里面是这个样子的:(指定到人脸存储路径即可)
这里网上有许多教程可以自动生成csv文件,笔者是直接下载别人的,然后查找替换成自己路径下即可,关键我们要学会的是怎么利用csv文件去访问图片和标签。
这里可以参考笔者的程序,先定义子函数,之后在主程序中调用即可:
之后便是一些处理,将摄像头采集到的图像检测出人脸,再将人脸处理成指定格式,调用predict函数进行识别,和库内数据比较即可。
具体全面的程序和项目代码将在下一篇给出!