SQL 性能优化梳理(下)

简介: SQL数据库开发

2.2 索引

索引包含一个或多个列的值。MySql只能高效的利用索引的最左前缀列。索引的优势:

  • 减少查询扫描的数据量
  • 避免排序和零时表
  • 将随机IO变为顺序IO (顺序IO的效率高于随机IO)

B-Tree

使用最多的索引类型。采用B-Tree数据结构来存储数据(每个叶子节点都包含指向下一个叶子节点的指针,从而方便叶子节点的遍历)。B-Tree索引适用于全键值,键值范围,键前缀查找,支持排序。

B-Tree索引限制:

  • 如果不是按照索引的最左列开始查询,则无法使用索引。
  • 不能跳过索引中的列。如果使用第一列和第三列索引,则只能使用第一列索引。
  • 如果查询中有个范围查询,则其右边的所有列都无法使用索引优化查询。

哈希索引

只有精确匹配索引的所有列,查询才有效。存储引擎会对所有的索引列计算一个哈希码,哈希索引将所有的哈希码存储在索引中,并保存指向每个数据行的指针。

哈希索引限制:

  • 无法用于排序
  • 不支持部分匹配
  • 只支持等值查询如=,IN(),不支持 < >

优化建议点

  • 注意每种索引的适用范围和适用限制。
  • 索引的列如果是表达式的一部分或者是函数的参数,则失效。
  • 针对特别长的字符串,可以使用前缀索引,根据索引的选择性选择合适的前缀长度。
  • 使用多列索引的时候,可以通过 AND 和 OR 语法连接。
  • 重复索引没必要,如(A,B)和(A)重复。
  • 索引在where条件查询和group by语法查询的时候特别有效。
  • 将范围查询放在条件查询的最后,防止范围查询导致的右边索引失效的问题。
  • 索引最好不要选择过长的字符串,而且索引列也不宜为null。

3 查询时优化

3.1 查询质量的三个重要指标

  • 响应时间 (服务时间,排队时间)
  • 扫描的行
  • 返回的行

3.2 查询优化点

  • 避免查询无关的列,如使用Select * 返回所有的列。
  • 避免查询无关的行
  • 切分查询。将一个对服务器压力较大的任务,分解到一个较长的时间中,并分多次执行。如要删除一万条数据,可以分10次执行,每次执行完成后暂停一段时间,再继续执行。过程中可以释放服务器资源给其他任务。
  • 分解关联查询。将多表关联查询的一次查询,分解成对单表的多次查询。可以减少锁竞争,查询本身的查询效率也比较高。因为MySql的连接和断开都是轻量级的操作,不会由于查询拆分为多次,造成效率问题。
  • 注意count的操作只能统计不为null的列,所以统计总的行数使用count(*)。
  • group by 按照标识列分组效率高,分组结果不宜出行分组列之外的列。
  • 关联查询延迟关联,可以根据查询条件先缩小各自要查询的范围,再关联。
  • Limit分页优化。可以根据索引覆盖扫描,再根据索引列关联自身查询其他列。如

SELECT
 id,
 NAME,
 age
WHERE
 student s1
INNER JOIN (
 SELECT
     id
 FROM
     student
 ORDER BY
     age
 LIMIT 50,5
) AS s2 ON s1.id = s2.id


  • Union查询默认去重,如果不是业务必须,建议使用效率更高的Union All

补充内容

来自大神-小宝

1.条件中的字段类型和表结构类型不一致,mysql会自动加转换函数,导致索引作为函数中的参数失效。

2.like查询前面部分未输入,以%开头无法命中索引。

3.补充2个5.7版本的新特性:

generated column,就是数据库中这一列由其他列计算而得

CREATE TABLE triangle (sidea DOUBLE, sideb DOUBLE, area DOUBLE AS (sidea * sideb / 2));
insert into triangle(sidea, sideb) values(3, 4);
select * from triangle;


+-------+-------+------+
| sidea | sideb | area |
+-------+-------+------+
|   3      |   4      |  6     |
+-------+-------+------+

支持JSON格式数据,并提供相关内置函数

CREATE TABLE json_test (name JSON);
INSERT INTO json_test VALUES('{"name1": "value1", "name2": "value2"}');
SELECT * FROM json_test WHERE JSON_CONTAINS(name, '$.name1');

来自JVM专家-达

关注explain在性能分析中的使用

EXPLAIN SELECT settleId FROM Settle WHERE settleId = "3679"


31.jpg


  • select_type,有几种值:simple(表示简单的select,没有union和子查询),primary(有子查询,最外面的select查询就是primary),union(union中的第二个或随后的select查询,不依赖外部查询结果),dependent union(union中的第二个或随后的select查询,依赖外部查询结果)
  • type,有几种值:system(表仅有一行(=系统表),这是const连接类型的一个特例),const(常量查询), ref(非唯一索引访问,只有普通索引),eq_ref(使用唯一索引或组件查询),all(全表查询),index(根据索引查询全表),range(范围查询)
  • possible_keys: 表中可能帮助查询的索引
  • key,选择使用的索引
  • key_len,使用的索引长度
  • rows,扫描的行数,越大越不好
  • extra,有几种值:Only index(信息从索引中检索出,比扫描表快),where used(使用where限制),Using filesort (可能在内存或磁盘排序),Using temporary(对查询结果排序时使用临时表)
相关文章
|
6月前
|
SQL 缓存 监控
14个Flink SQL性能优化实践分享
【7月更文挑战第12天】 1. **合理设置并行度**: 根据数据量和资源调整以提高处理速度. 2. **优化数据源**: 使用分区表并进行预处理减少输入量. 3. **数据缓存**: 采用 `BROADCAST` 或 `REPARTITION` 缓存常用数据. 4. **索引和分区**: 创建索引并按常用字段分区. 5. **避免不必要的计算**: 检查并移除多余的计算步骤. 6. **调整内存配置**: 分配足够内存避免性能下降. 7. **优化连接操作**: 选择适合大表和小表的连接方式. 8. **数据类型优化**: 选择合适类型以节省资源. ........
156 1
|
2月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
63 0
|
4月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
699 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
3月前
|
SQL 监控 Oracle
Oracle SQL性能优化全面指南
在数据库管理领域,Oracle SQL性能优化是确保数据库高效运行和数据查询速度的关键
|
3月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
3月前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化策略
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生不利影响
|
5月前
|
SQL 存储 数据库
|
5月前
|
SQL 数据处理 数据库
SQL正则表达式应用:文本数据处理的强大工具——深入探讨数据验证、模式搜索、字符替换等核心功能及性能优化和兼容性问题
【8月更文挑战第31天】SQL正则表达式是数据库管理和应用开发中处理文本数据的强大工具,支持数据验证、模式搜索和字符替换等功能。本文通过问答形式介绍了其基本概念、使用方法及注意事项,帮助读者掌握这一重要技能,提升文本数据处理效率。尽管功能强大,但在不同数据库系统中可能存在兼容性问题,需谨慎使用以优化性能。
77 0
|
5月前
|
SQL 数据管理 关系型数据库
SQL与云计算:利用云数据库服务实现高效数据管理——探索云端SQL应用、性能优化、安全性与成本效益,为企业数字化转型提供全方位支持
【8月更文挑战第31天】在数字化转型中,企业对高效数据管理的需求日益增长。传统本地数据库存在局限,而云数据库服务凭借自动扩展、高可用性和按需付费等优势,成为现代数据管理的新选择。本文探讨如何利用SQL和云数据库服务(如Amazon RDS、Google Cloud SQL和Azure SQL Database)实现高效的数据管理。通过示例和最佳实践,展示SQL在云端的应用、性能优化、安全性及成本效益,助力企业提升竞争力。
84 0
|
6月前
|
SQL 存储 数据库
MySQL设计规约问题之性能分析工具如Sql explain、show profile和mysqlsla在数据库性能优化中有什么作用
MySQL设计规约问题之性能分析工具如Sql explain、show profile和mysqlsla在数据库性能优化中有什么作用