MySQL 分库分表方案总结(下)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: SQL数据库开发

数据库架构

1、简单的MySQL主从复制:

MySQL的主从复制解决了数据库的读写分离,并很好的提升了读的性能,其图如下:

2.jpg

其主从复制的过程如下图所示:

3.jpg

但是,主从复制也带来其他一系列性能瓶颈问题:

  • 1.写入无法扩展
  • 2.写入无法缓存
  • 3.复制延时
  • 4.锁表率上升
  • 5.表变大,缓存率下降

那问题产生总得解决的,这就产生下面的优化方案,一起来看看。

2、MySQL垂直分区

如果把业务切割得足够独立,那把不同业务的数据放到不同的数据库服务器将是一个不错的方案,而且万一其中一个业务崩溃了也不会影响其他业务的正常进行,并且也起到了负载分流的作用,大大提升了数据库的吞吐能力。经过垂直分区后的数据库架构图如下:

4.jpg然而,尽管业务之间已经足够独立了,但是有些业务之间或多或少总会有点联系,如用户,基本上都会和每个业务相关联,况且这种分区方式,也不能解决单张表数据量暴涨的问题,因此为何不试试水平分割呢?

3、MySQL水平分片(Sharding)

这是一个非常好的思路,将用户按一定规则(按id哈希)分组,并把该组用户的数据存储到一个数据库分片中,即一个sharding,这样随着用户数量的增加,只要简单地配置一台服务器即可,原理图如下:



5.jpg


如何来确定某个用户所在的shard呢,可以建一张用户和shard对应的数据表,每次请求先从这张表找用户的shardid,再从对应shard中查询相关数据,如下图所示:6.jpg

单库单表

单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。

单库多表

随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能。如果使用mysql,还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待。

可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的user_0000,user_0001等表,user_0000+user_0001+…的数据刚好是一份完整的数据。

多库多表

随着数据量增加也许单台DB的存储空间不够,随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平区分。

分库分表规则

设计表的时候需要确定此表按照什么样的规则进行分库分表。例如,当有新用户时,程序得确定将此用户信息添加到哪个表中;同理,当登录的时候我们得通过用户的账号找到数据库中对应的记录,所有的这些都需要按照某一规则进行。

路由

通过分库分表规则查找到对应的表和库的过程。如分库分表的规则是user_idmod4的方式,当用户新注册了一个账号,账号id的123,我们可以通过idmod4的方式确定此账号应该保存到User_0003表中。当用户123登录的时候,我们通过123mod4后确定记录在User_0003中。

分库分表产生的问题,及注意事项

1.分库分表维度的问题

假如用户购买了商品,需要将交易记录保存取来,如果按照用户的纬度分表,则每个用户的交易记录都保存在同一表中,所以很快很方便的查找到某用户的购买情况,但是某商品被购买的情况则很有可能分布在多张表中,查找起来比较麻烦。反之,按照商品维度分表,可以很方便的查找到此商品的购买情况,但要查找到买人的交易记录比较麻烦。

所以常见的解决方式有:

a.通过扫表的方式解决,此方法基本不可能,效率太低了。

b.记录两份数据,一份按照用户纬度分表,一份按照商品维度分表。

c.通过搜索引擎解决,但如果实时性要求很高,又得关系到实时搜索。

2.联合查询的问题

联合查询基本不可能,因为关联的表有可能不在同一数据库中。

3.避免跨库事务

避免在一个事务中修改db0中的表的时候同时修改db1中的表,一个是操作起来更复杂,效率也会有一定影响。

4.尽量把同一组数据放到同一DB服务器上

例如将卖家a的商品和交易信息都放到db0中,当db1挂了的时候,卖家a相关的东西可以正常使用。也就是说避免数据库中的数据依赖另一数据库中的数据。

一主多备

在实际的应用中,绝大部分情况都是读远大于写。Mysql提供了读写分离的机制,所有的写操作都必须对应到Master,读操作可以在Master和Slave机器上进行,Slave与Master的结构完全一样,一个Master可以有多个Slave,甚至Slave下还可以挂Slave,通过此方式可以有效的提高DB集群的QPS.

所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。

此外,可以看出Master是集群的瓶颈,当写操作过多,会严重影响到Master的稳定性,如果Master挂掉,整个集群都将不能正常工作。

所以,1.当读压力很大的时候,可以考虑添加Slave机器的分式解决,但是当Slave机器达到一定的数量就得考虑分库了。2.当写压力很大的时候,就必须得进行分库操作。


MySQL使用为什么要分库分表

可以用说用到MySQL的地方,只要数据量一大,马上就会遇到一个问题,要分库分表.

这里引用一个问题为什么要分库分表呢?MySQL处理不了大的表吗?

其实是可以处理的大表的.我所经历的项目中单表物理上文件大小在80G多,单表记录数在5亿以上,而且这个表

属于一个非常核用的表:朋友关系表.

但这种方式可以说不是一个最佳方式.因为面临文件系统如Ext3文件系统对大于大文件处理上也有许多问题.

这个层面可以用xfs文件系统进行替换.但MySQL单表太大后有一个问题是不好解决:表结构调整相关的操作基

本不在可能.所以大项在使用中都会面监着分库分表的应用.

从Innodb本身来讲数据文件的Btree上只有两个锁,叶子节点锁和子节点锁,可以想而知道,当发生页拆分或是添加

新叶时都会造成表里不能写入数据.

所以分库分表还就是一个比较好的选择了.

那么分库分表多少合适呢?

经测试在单表1000万条记录一下,写入读取性能是比较好的.这样在留点buffer,那么单表全是数据字型的保持在

800万条记录以下,有字符型的单表保持在500万以下.

如果按100库100表来规划,如用户业务:

500万100100=50000000万=5000亿记录.

心里有一个数了,按业务做规划还是比较容易的.

用知识的力量武装,把生活的绚烂点亮!


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
关系型数据库 MySQL Java
MySQL 分库分表 + 平滑扩容方案 (秒懂+史上最全)
MySQL 分库分表 + 平滑扩容方案 (秒懂+史上最全)
|
11月前
|
存储 SQL 关系型数据库
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
824 3
Mysql高可用架构方案
|
10月前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
1677 57
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
7月前
|
关系型数据库 MySQL 数据库
|
7月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
8月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
275 9
|
9月前
|
监控 关系型数据库 MySQL
Aurora MySQL负载突增应对策略与优化方案
通过以上策略,企业可以有效应对 Aurora MySQL 的负载突增,确保数据库在高负载情况下依然保持高性能和稳定性。这些优化方案涵盖了从架构设计到具体配置和监控的各个方面,能够全面提升数据库的响应速度和处理能力。在实际应用中,应根据具体的业务需求和负载特征,灵活调整和应用这些优化策略。
157 22
|
9月前
|
Java 关系型数据库 MySQL
MySQL 分库分表方案
本文总结了数据库分库分表的相关概念和实践,针对单张表数据量过大及增长迅速的问题,介绍了垂直和水平切分的方式及其适用场景。文章分析了分库分表后可能面临的事务支持、多库结果集合并、跨库join等问题,并列举了几种常见的开源分库分表中间件。最后强调了不建议水平分库分表的原因,帮助读者在规划时规避潜在问题。
953 20
|
9月前
|
关系型数据库 MySQL 中间件
MySQL 中如何实现分库分表?常见的分库分表策略有哪些?
在MySQL中,分库分表(Sharding)通过将数据分散到多个数据库或表中,以应对大量数据带来的性能和扩展性问题。常见策略包括:哈希分片(分布均匀,查询效率高)、范围分片(适合范围查询)、列表分片(适用于特定值查询)、复合分片(灵活性高)和动态分片(灵活应对负载变化)。每种策略各有优劣,需根据业务需求选择。常用工具如MyCAT、ShardingSphere和TDDL可简化实现过程。
|
10月前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。

热门文章

最新文章

推荐镜像

更多