MySQL 分库分表方案介绍!

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: SQL数据库开发

前言

公司最近在搞服务分离,数据切分方面的东西,因为单张包裹表的数据量实在是太大,并且还在以每天60W的量增长。 之前了解过数据库的分库分表,读过几篇博文,但就只知道个模糊概念, 而且现在回想起来什么都是模模糊糊的。

今天看了一下午的数据库分库分表,看了很多文章,现在做个总结,“摘抄”下来。(但更期待后期的实操) 会从以下几个方面说起:

第一部分:实际网站发展过程中面临的问题。

第二部分:有哪几种切分方式,垂直和水平的区别和适用面。

第三部分:目前市面有的一些开源产品,技术,它们的优缺点是什么。

第四部分:可能是最重要的,为什么不建议水平分库分表!?这能让你能在规划前期谨慎的对待,规避掉切分造成的问题。

名词解释

库:database;表:table;分库分表:sharding

数据库架构演变

刚开始我们只用单机数据库就够了,随后面对越来越多的请求,我们将数据库的写操作和读操作进行分离, 使用多个从库副本(Slaver Replication)负责读,使用主库(Master)负责写, 从库从主库同步更新数据,保持数据一致。架构上就是数据库主从同步。 从库可以水平扩展,所以更多的读请求不成问题。

但是当用户量级上来后,写请求越来越多,该怎么办?加一个Master是不能解决问题的, 因为数据要保存一致性,写操作需要2个master之间同步,相当于是重复了,而且更加复杂。

这时就需要用到分库分表(sharding),对写操作进行切分。

分库分表前的问题

任何问题都是太大或者太小的问题,我们这里面对的数据量太大的问题。

用户请求量太大

因为单服务器TPS,内存,IO都是有限的。 解决方法:分散请求到多个服务器上; 其实用户请求和执行一个sql查询是本质是一样的,都是请求一个资源,只是用户请求还会经过网关,路由,http服务器等。

单库太大

单个数据库处理能力有限;单库所在服务器上磁盘空间不足;单库上操作的IO瓶颈 解决方法:切分成更多更小的库

单表太大

CRUD都成问题;索引膨胀,查询超时 解决方法:切分成多个数据集更小的表。

分库分表的方式方法

一般就是垂直切分和水平切分,这是一种结果集描述的切分方式,是物理空间上的切分。 我们从面临的问题,开始解决,阐述: 首先是用户请求量太大,我们就堆机器搞定(这不是本文重点)。

然后是单个库太大,这时我们要看是因为表多而导致数据多,还是因为单张表里面的数据多。 如果是因为表多而数据多,使用垂直切分,根据业务切分成不同的库。

如果是因为单张表的数据量太大,这时要用水平切分,即把表的数据按某种规则切分成多张表,甚至多个库上的多张表。分库分表的顺序应该是先垂直分,后水平分。因为垂直分更简单,更符合我们处理现实世界问题的方式。

垂直拆分

  1. 垂直分表
    也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对那种几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
  2. 垂直分库
    垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Producet一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
    数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平拆分

  1. 水平分表
    针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。
  2. 水平分库分表
    将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
  3. 水平分库分表切分规则
  1. RANGE
    从0到10000一个表,10001到20000一个表;
  2. HASH取模
    一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
  3. 地理区域
    比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
  4. 时间
    按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题

事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

多库结果集合并(group by,order by)

TODO

跨库join

TODO 分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表, 结果原本一次查询能够完成的业务,可能需要多次查询才能完成。 粗略的解决方法: 全局表:基础数据,所有库都拷贝一份。 字段冗余:这样有些字段就不用join去查询了。 系统层组装:分别查询出所有,然后组装起来,较复杂。

分库分表方案产品

目前市面上的分库分表中间件相对较多,其中基于代理方式的有MySQL Proxy和Amoeba, 基于Hibernate框架的是Hibernate Shards,基于jdbc的有当当sharding-jdbc, 基于mybatis的类似maven插件式的有蘑菇街的蘑菇街TSharding, 通过重写spring的ibatis template类的Cobar Client。

还有一些大公司的开源产品:0.jpg

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
存储 SQL 关系型数据库
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
199 3
Mysql高可用架构方案
|
14天前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
23天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
2月前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
80 5
|
2月前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
55 1
|
4月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
706 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
4月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
573 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
3月前
|
SQL 关系型数据库 MySQL
mysql集群方案
mysql集群方案
54 0
|
5月前
|
运维 容灾 关系型数据库
MySQL高可用方案--Xenon全解
MySQL高可用方案--Xenon全解
|
5月前
|
安全 关系型数据库 MySQL
【MySQL】Orchestrator最简单的 mysql 高可用方案最细细细细~
【MySQL】Orchestrator最简单的 mysql 高可用方案最细细细细~