第116天:机器学习算法之朴素贝叶斯理论

简介: 第116天:机器学习算法之朴素贝叶斯理论

朴素贝叶斯(Naive Bayesian Mode,NBM)


贝叶斯由来


贝叶斯是由英国学者托马斯·贝叶斯 提出的一种纳推理的理论,后来发展为一种系统的统计推断方法。被称为贝叶斯方法。


朴素贝叶斯


朴素贝叶斯法是基于贝叶斯定理特征条件独立假设的分类方法。优点是在数据较少的情况下仍然有效,可以处理多类别的问题。缺点是对于输入数据的装备方式较为敏感。适用于标称型的数据。


特征条件独立:假设 X 的 N 个特征在类确定的条件下都是条件独立的。这样大大简化了计算的复杂度,但是会牺牲一些准确性。


标称型数据:只在有限目标集中取值,比如真与假。


贝叶斯定理


条件概率就是指在事件 B 发生的情况下事件 A 发生的概率,用 P(A|B) 表示,读作 "A 在 B 发生的条件下发生的概率"。


image.png


image.png


其中:


  1. P(A) 是 A 的先验概率或边缘概率,不考虑 B 的因素
  2. P(A|B) 是已知 B 发生后 A 的条件概率,也称作 A 的后验概率。
  3. P(B|A) 是已知 A 发生后 B 的条件概率,也称作 B 的后验概率,称作似然度。
  4. P(B) 是 B 的先验概率或边缘概率,称作标准化常量。
  5. P(B|A)/P(B) 称作标准似然度。


示例1:桶中的石子


假设现在有 A 桶 和 B 桶两个桶,A 桶里面装有 4 块石子分别2 块黑色的石子和2块灰色的石子,B 桶里面装有 3 块石子分别为 2 块黑色石子和 1 块灰色石子,那么在这两个桶里面取出任意一个石子且都是灰色的,问这个灰色石子在 A 桶中被取出的概率是多少?

假设在 A 桶里面取出石子为事件 A,取出灰色石子为事件 B,在 A 桶中取出灰色石子的事件概率为 P(B|A),则:P(A) = 4/7,P(B) = 3/7,P(B|A) = 1/2,按照公式:


image.png


所以,在两个桶里面取出任意一个石子且为灰色的,这个灰色石子在 A 桶被取出的概率为 2/3


示例2:根据天气情况判断是否出去游玩


在现实中我们经常按天气情况判断是否出去游玩,下面做成一个表格


天气 温度 湿度 风力 结果
多云
多云
多云
多云
多云
多云
小雨
小雨
小雨
小雨


现在有个朋友喊你出去游玩,但是天气是多云、温度较冷、湿度较低、风力强,判断一下是否出去游玩。


套用上面朴素贝叶斯公式 P(类别|特征) 为 P(是|多云、冷、低、弱) 和 P(类别|特征) = P(否|多云、冷、低、弱) 的概率。


如果 P(是|多云、冷、低、弱) > P(否|多云、冷、低、弱),则为出去游玩。如果 P(是|多云、冷、低、弱) < P(否|多云、冷、低、弱),则为不出去游玩。


由朴素贝叶斯公式可知:


image.png


统计出去游玩的特征概率


下面就可以将特征一个一个统计计算


1.首先我们整理出去玩的样本,结果为是则出去游玩的样本如下,一共有 3 条数据


天气 温度 湿度 风力 结果
多云
多云
多云
小雨


P(是) = 4/10 = 2/5



2.当天气为多云出去游玩 P(多云|是) 的样本统计如下:


天气 温度 湿度 风力 结果
多云
多云
多云


P(多云|是) = 3/4


3.当温度为冷出去游玩 P(冷|是) 的样本统计如下:


天气 温度 湿度 风力 结果
多云


P(冷|是) = 1/4


4.当湿度为低出去游玩 P(低|是) 的样本统计如下


天气 温度 湿度 风力 结果
多云
多云
小雨


P(低|是) = 3/4


5.当风力为弱出去游玩 P(弱|是) 的样本统计如下


天气 温度 湿度 风力 结果
多云

P(弱|是) = 1/4


在这里已经统计出了 P(多云∣是)、P(冷∣是)、P(低∣是)、P(弱∣是)、P(是) 的概率,下面开始统计 P(多云)、P(冷)、P(低)、P(弱) 的概率


1.天气为多云 P(多云) 的样本统计一共有 6 条,概率则为 6/10。P(多云) = 6/10 = 3/5


2.温度为冷 P(冷) 的样本统计一共有 4 条,概率则为 4/10。P(冷) = 4/10 = 2/5


3.湿度为冷 P(低) 的样本统计一共有 4 条,概率则为 4/10。P(低) = 4/10 = 2/5


4.风力为弱 P(弱) 的样本统计一共有 5 条,概率则为 1/2。P(弱) = 1/2


计算游玩概率


到这里已经统计出了 P(多云)、P(冷)、P(低)、P(弱) 的概率,把所有数值带入公式:


image.png


统计不出去游玩的特征概率


在是否出去游玩中计算了多云、冷、低、强的天气情况下出去游玩 P(是|多云、冷、低、弱) 的概率之后,还需要计算同样的天气情况下不出去游玩 P(否|多云、冷、低、弱)的概率,和上面使用同样的方法计算 P(多云|否)、P(冷|否)、P(低|否)、P(弱|否)*P(否) 的概率。


1.统计不出去游玩 P(否) 的概率,P(否) = 6/10 = 3/5


2.统计当天气为多云不出去游玩 P(多云|否) 的样本概率,P(多云|否) = 3/6 = 1/2


3.统计当温度为冷不出去游玩 P(冷|否) 的样本概率,P(冷|否) = 3/6 = 1/2


4.统计当湿度为低不出去游玩 P(低|否) 的样本概率,P(低|否) = 1/6


5.当风力为弱不出去游玩 P(弱|否) 的样本概率,P(弱|否) = 4/6 = 2/3


计算不游玩概率


上面计算了当不出去游玩是天气情况的概率,则把数值带入公式:


image.png


概率比较


很显然的结果:(3/4 * 1/4 * 3/4 * 1/4 * 2/5) / (3/5 * 2/5 * 2/5 * 1/2) < (1/2 * 1/2 * 1/6 * 2/3 * 3/5) / (3/5 * 2/5 * 2/5 * 1/2) 所以 P(是|多云、冷、低、弱) < P(否|多云、冷、低、弱)。


Python 实现


在 Python 中借助 pandas 模块和 numpy 模块可以实现计算朴素贝叶斯,在代码中需要做几件事情:


  1. 需要选择样本,如:示例2中的天气样本


  1. 计算每个类别的概率,这是先验概率


  1. 计算每个特征和类别同时发生的概率,这是后验概率


  1. 计算条件概率


  1. 比较特征出现在类别的概率


import pandas as pdimport numpy as np
class Nbm(object):
    def getSampleSet(self):        dataSet = np.array(pd.read_csv('csv文件'))  #将数据转为数组        featureData = dataSet[:, 0 : dataSet.shape[1] - 1] #取出特征        labels = dataSet[:, dataSet.shape[1] - 1] #取出类别        return featureData, labels
    def priori(self, labels):        # 求出是和否的先验概率        labels = list(labels)        priori_ny = {}        for label in labels:            priori_ny[label] = labels.count(label) / float(len(labels)) # P = count(label) / count(labels)        return priori_ny
    def feature_probability(self, priori_ny, features):        # 求出特征概率:多云+是,多云+否,冷+是,冷+否同时发生的概率        p_feature_ny = {}        for ny in priori_ny.keys():            ny_index = [i for i, label in enumerate(labels) if label == ny] # 是、否的下标            for j in range(len(features)):                f_index = [i for i, feature in enumerate(trainData[:, j]) if feature == features[j]] # 特征的下标                xy_count = len(set(f_index) & set(ny_index)) # 类别和特征下标相同的长度                pkey = str(features[j]) + '+' + str(ny)                p_feature_ny[pkey] = xy_count / float(len(labels)) # 特征和类别同时发生的概率        return p_feature_ny
    def conditional_probability(self, priori_ny, feature_probability, features):        #求出条件概率        P = {}        for y in priori_ny.keys():            for x in features:                pkey = str(x) + '|' + str(y)                P[pkey] = feature_probability[str(x) + '+' + str(y)] / float(priori_ny[y])  # P[X1/Y] = P[X1Y]/P[Y]        return P
    def classify(self, priori_ny, feature_probability, features):
        #求条件概率        p = self.conditional_probability(priori_ny, feature_probability, features)
        #求出[多云、冷、低、弱]所属类别        f = {}        for ny in priori_ny:            f[ny] = priori_ny[ny]            for x in features:                f[ny] = f[ny] * p[str(x)+'|'+str(ny)]   #计算P(多云∣是)∗P(冷∣是)∗P(低∣是)∗P(弱∣是)∗P(是)
        return max(f, key=f.get)  #概率最大值对应的类别
if __name__ == '__main__':    nbm = Nbm()    features = ['多云', '冷', '低', '弱']    trainData, labels = nbm.getSampleSet()    priori_ny = nbm.priori(labels)
    feature_probability = nbm.feature_probability(priori_ny, features)
    result = nbm.classify(priori_ny, feature_probability, features)
    print(features, '的结果是', result)


总结


简单的介绍了朴素贝叶斯的一些概念,用了两个示例来增强朴素贝叶斯的学习,希望对大家有所帮助。


参考资料

《机器学习实战》

https://baike.baidu.com/item/贝叶斯公式

https://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html

https://zhuanlan.zhihu.com/p/26262151





目录
相关文章
|
24天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
74 4
|
3天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
17 2
|
20天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
|
29天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
83 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
29天前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
36 0
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
35 0
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
72 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
下一篇
DataWorks