深入理解MySQL索引-为什么采用B+树结构?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 深入理解MySQL索引-为什么采用B+树结构?

一、索引的实现模型

MySQL索引类似于书籍的目录,其设计目的是为了提高数据查询的效率。索引的本质是一个数据结构,那么自然有多种不同的数据结构设计,所以有不同的索引实现模型,典型的实现模型有哈希表、有序数组和搜索树。

1、哈希表

哈希表是一种键-值(key-value)的存储结构,只要确定了待查询的key,就可以很快速地查询到对应的value。设置一个合适离散度的哈希函数,将key值通过哈希函数映射成一个数值作为在数组中的位置下标,将对应的数据对象放在这个数组中。

当然不同的key有可能存在经过哈希函数映射以后的值是一样的情况,针对这种场景,可以在对应的数组存放一个链表,key映射后值一样的数据对象根据先后顺序存放在链表中,当进行查询时,则遍历此列表进行比对查询,这与Java中HashMap数据结构的实现十分类似。

以下是哈希表形式的示意图:

通过以上的描述可知,哈希表特别适合等值查询的场景,例如Redis,数据插入的效率也比较高,其时间复杂度为O(1)。但是,对于范围查询等场景,由于数据在哈希表中的存放是无序的,所以范围查询会造成全表的扫描,因此查询的效率会严重下降,时间复杂度为O(n)。

2、有序数组

有序数组的形式是将数据存放在一个大型数组当中,并且数据在数组当中存放是按照数据是进行有序存放的,这样子的场景下,等值查询和范围查询的速度都非常快。例如,可以使用二分法根据key值实现快速查询,针对范围查询则转化为根据等值查询查到第一个元素以后往后进行遍历即可,时间复杂度为O(log(N))。

以下是有序数组形式的示意图:

虽然在查询的场景下有序数组的效率很高,但是一旦要插入一条数据记录就需要挪动后面所有的数据,这个成本就非常的高,所以有序数组在数据插入的场景下效率比较低,时间复杂度为O(n)+O(log(N))。有序数组适用于那些数据基本不会变化的静态存储引擎。

3、搜索树

搜索树是经典的数据结构,最基础的有二叉搜索树。二叉搜索树的特点是:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。

以下是搜索树形式的示意图:

如图所示,如果要查询User_9,则搜索路径为User_1>User_3>User_8>User_9,在平衡二叉树的情况下,其查询的时间复杂度为O(log(N)),当插入新的数据记录的时候,需要对树结构进行调节,维持树结构是一棵平衡二叉树,这个时间复杂度也为O(log(N))。

从以上分析来看,平衡二叉树的结构维持了数据查询和数据更新的时间复杂度都为O(log(N)),相比较有序数据和哈希表,其达到了一个数据插入和数据更新的一个平衡。

二、InnoDB存储引擎的索引模型

在第一节,我们提到使用平衡二叉树是一个实现索引组织的较好的方案,那么MySQL中实际的索引是否就可以采用平衡二叉树实现呢?

要回答这个问题,首先要了解MySQL数据的交互形式。

MySQL中数据数据最终存储在磁盘中,真正的数据处理其实是在内存中执行,由于磁盘读写的速度非常慢,特别是传统的机械磁盘,寻址时间较长,如果每个操作都直接读写磁盘,那么性能会很差。为了解决这个问题,InnoDB将数据分成了若干数据页,以页作为磁盘与内存交互的基本单位,每次读写至少都是以1页作为基本单位,这样子一来减少了与磁盘的交互次数,提升了性能。

既然InnoDB基于数据页进行读取,而数据的组织形式是二叉树,那么为了方便在内存中以二叉树的形式进行数据的查找和更新,就应该一次性读取整个二叉树,所以将每个二叉树节点作为一个数据页是合理的设计。这样子一来,当表中的数据增加,二叉树的高度就会变得很大,而每次访问一个节点都需要读取一个数据页,想象一棵  100 万节点的平衡二叉树,树高 20,一次查询可能需要访问 20 个数据页,在机械硬盘时代,从磁盘随机读一个数据页需要 10 ms  左右的寻址时间,也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms  的时间,这样的效率是不可接受的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据页,于是应该减少树的高度,故应该采用N叉树,而不是二叉树,这里,“N 叉”树中的“N”取决于数据页的大小,数据页越大,则可以存放的索引值越多,则N越大。

以  InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4  的时候,除根节点外,每个节点都可以存放1200个值,总共就可以存 1200 的 3 次方个值,这已经 17  亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3  次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。结合以上提到的N叉树结合其他的存储特点,InnoDB选择了使用了 B+ 树索引模型,数据存储在 B+ 树中,表中每一个索引在Innodb中就对应一棵B+树。

注:本文总结自林晓斌老师的MySQL教程。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
20天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
22天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
44 1
|
11天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
55 0
|
12天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
42 0
|
12天前
|
JSON 关系型数据库 MySQL
MySQL JSON数据存储结构与操作
通过本文的介绍,我们了解了MySQL中JSON数据类型的基本操作、常用JSON函数、以及如何通过索引和优化来提高查询性能。JSON数据类型为存储和操作结构化数据提供了灵活性和便利性,在现代数据库应用中具有广泛的应用前景。希望本文对您在MySQL中使用JSON数据类型有所帮助。
28 0
|
23天前
|
监控 关系型数据库 MySQL
mysql8索引优化
综上所述,深入理解和有效实施这些索引优化策略,是解锁MySQL 8.0数据库高性能查询的关键。
28 0
|
27天前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。
|
4天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
17 4
|
2天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
8 1
|
28天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
58 3
Mysql(4)—数据库索引

推荐镜像

更多