【计算机网络】数据链路层 : 总结 ( 封装成帧 | 流量控制与可靠传输 | 差错控制 | 介质访问控制 | 局域网 | 广域网 | 数据链路层设备 ) ★★★(一)

简介: 【计算机网络】数据链路层 : 总结 ( 封装成帧 | 流量控制与可靠传输 | 差错控制 | 介质访问控制 | 局域网 | 广域网 | 数据链路层设备 ) ★★★(一)

一、数据链路层 功能


"数据链路层" 功能 :


① 可靠性服务 : “数据链路层” 在 物理层 提供的服务的基础上 , 提供可靠性服务 ;


② 服务内容 : 将 网络层 下发的数据 , 可靠地 传输给 相邻节点的 网络层 ;


③ 逻辑上无差错链路 : “数据链路层” 加强了 物理层 传输 比特流 的能力 , 物理层传输可能出错 , 数据链路层可以将 物理连接 改造成 逻辑上无差错 的数据链路 ;




"数据链路层" 功能 列举 :


① 为网络层 提供服务


无确认无连接服务

有确认无连接服务

有确认有连接服务

② 链路管理 , 面向连接的服务中 , 建立连接 , 维持连接 , 释放连接 ;


③ 将 数据报 组成 数据帧


④ 流量控制 , 主要是 限制 发送方的数据率 ;


⑤ 差错控制 , 帧错误处理 ( 重发 ) , 位错误处理 ( 纠正 ) ;



参考博客 : 【计算机网络】数据链路层 : 概述 ( 基本概念 | 功能 | 为 “网络层“ 提供的服务 )






二、封装成帧 ★


1 . 数据帧透明传输需求 :


① 数据帧封装 : 数据帧 添加 帧首部 , 和 帧尾部 ; 帧首部 和 帧尾部 之间的部分就是实际的数据 ;


② 传输 文本文件 : 数据帧 的数据 是 文本文件组成时 , 数据都是 ASCII 码 , 键盘上传输的任何字符 , 都 可以透明传输 ;


③ 传输 非文本文件 : 如果传输的文件是 非 文本文件 , 如 图像 , 音频 , 视频 等 , 此时 文件中的数据可能是任意值 , 就有可能与 帧尾部 或 帧首部 相同 , 此时就需要 采用 字符填充法实现 透明传输 ;




2 . 字符填充法 :


① 数据的随机性 : 原始数据中 , 存在 与 帧首部 , 帧尾部 相同的数据 ;


② 发送端填充转义字符 : 在这些 数据中的 帧首部 / 帧尾部 相同的数据前 , 填充一个转义字符 , 告诉接收端 , 转义字符后的后续数据作为帧数据 , 不当做 帧首部 / 帧尾部 使用 ;


③ 接收端接收数据 : 接收端 接收到的数据中有 转义字符 + 帧首部 / 尾部 样式的信息时 , 将转义字符后的数据当做帧数据 ; 当接收到 单独的 帧首部 / 尾部 时 ( 没有转义字符 ) , 才将其当做数据帧的首部 / 尾部 ;





3 . 零比特填充法 :


① “数据帧” 首部尾部设定 : 数据帧首部尾部 都设定成 01111110 0111111001111110 , 解决 数据中出现 01111110 0111111001111110 数据的情况 , 实现透明传输 ;


② 发送端 : 扫描发送数据 , 发现有连续的 5 55 个 1 11 , 就在后面加上一个 0 00 ; 这样 帧数据 永远不会出现 6 66 个 1 11 的数据 ;


③ 接收端 : 扫描接收数据 , 发现有连续的 5 55 个 1 11 , 就将后面的 0 00 删除 ; 对应 发送端的操作 ;



这样在比特流中可以传输任意比特组合 , 不会引起 数据帧 边界判定错误的问题 , 实现了透明传输 ;




参考博客 : 【计算机网络】数据链路层 : 封装数据帧 ( 附加信息 | 帧长度 | 透明传输 | 字符计数法 | 字符填充法 | 零比特填充法 | 违规编码法 )






三、流量控制 和 可靠传输 ★★




1、停止等待协议 ★


1 . 停止等待协议


停止-等待 协议 解决的问题 :


可靠传输 : 解决 由于 物理线路 , 设备故障 , 路由错误 等各种问题导致的 丢包问题 ;

流量控制 : 实现 发送端 与 接收端 的 流量控制 ;


停止-等待 协议 讨论场景 : 只考虑 一方为发送方 , 一方为接收方 ; 相当于 单工通信场景 ;



停止-等待 协议内容 : 发送方 每 发送完一个 数据帧 ( 分组 / 数据报 ) , 就停止发送 , 等待接收端确认 , 接收到 接收端 确认信息后 , 再发送下一个分组数据 ;



停止-等待 协议 应用场景 :


无差错情况

有差错情况



2 . 信道利用率 :


"停止-等待协议" 性能分析 :


优点 : 简单


缺点 : 信道利用率 低 ;




信道利用率 :


U = T D T D + R T T + T A U = \cfrac{T_D}{T_D + RTT + T_A}

U=

T

D


+RTT+T

A


T

D




U UU 是信道利用率 ;


T D T_DT

D


 是发送方发送延迟 , 即发送方用了多长时间将数据帧发送完毕 ;


R T T RTTRTT 是往返时延 ;


T A T_AT

A


 是接收方 发送 A C K ACKACK 确认帧 的时延 ;



"停止-等待协议" 信道利用率很低 , 大部分事件都在 传输的延迟上 , 用于发送接收的时间很少 ;




3 . 停止等待协议 信道利用率 计算示例 :


信道传输速率 4000b/s , 单向传播时延 30ms , 使 “停止-等待” 协议 信道利用率达到 80% , 数据帧长度至少是多少 ? ??



信道利用率公式为 :


U = T D T D + R T T + T A U = \cfrac{T_D}{T_D + RTT + T_A}

U=

T

D


+RTT+T

A


T

D





先把数据单位收拾下 , 传输速率 4000 比特 / 秒 , 单向传播时延 0.03 秒 , RTT 是 0.06 秒 ; 设 数据帧长度是 L LL 比特 ; 这里没有给出 ACK 发送延迟 , 当做 0 00 ;



L 4000 L 4000 + 0.06 + 0 = 0.8 \cfrac{\dfrac{L}{4000}}{\dfrac{L}{4000} + 0.06 + 0} = 0.8

4000

L


+0.06+0

4000

L



=0.8



分子分母都乘以 4000 40004000 ;



L L + 240 = 0.8 \cfrac{L}{L+ 240} = 0.8

L+240

L


=0.8


L = 0.8 L + 192 L= 0.8 L + 192L=0.8L+192


0.2 L = 192 0.2L= 1920.2L=192


L = 960 L= 960L=960 单位是 比特 ;


数据帧的长度至少是 960 960960 比特 ;




参考博客 : 【计算机网络】数据链路层 : 停止-等待协议 ( 无差错情况 | 有差错情况 | 帧丢失 | 帧出错 | ACK 确认帧丢失 | ACK 确认帧延迟 | 信道利用率公式 | 信道利用率计算 )★




2、后退 N 帧 ( GBN ) 协议 ★


"停止-等待" 协议 弊端 : 信道利用率低 , 发送完一帧后等待 , 这个时候信道完全是空闲的 ;



为了提高信道利用率 , 发送端 发送完一帧后 , 不用等待 接收端的 ACK 确认帧 , 立刻发送 第二帧 , 第三帧 , 这样信道的利用率就提高了 ;



相应协议也要做一些更改 :


① 增加 发送方 的 帧 序号范围 ;


② 发送方 缓存 多个 帧分组 ; 连续发送 N NN 帧 , 其中某一帧 可能需要重传 , 但不知道哪一帧需要重传 , 这里 需要将这 N NN 帧全部缓存下来 ;



这里有引出了两个在 “停止-等待” 协议基础上 , 改进的两个协议 :


后退 N NN 帧协议 ( GBN )

选择重传协议 ( SR )



2 . 后退 N 帧协议 重点 ★


发送方 累计确认 机制 : 收到 ACK N NN , 就表示 N NN 号帧及之前的帧 , 全部正确 ;



接收方 按序接收 : 接收方 只能 按照顺序接收 , 人如果中间有帧丢失 , 那么后续帧全部丢弃 ;



接收方 确认帧 : 接收方 如果 收到错误帧 , 失序帧 , 那么查找最近成功接收的正确的帧的最大的 , 按序到达的帧 序号是多少 , 发送该帧对应的 ACK 确认帧 ;



发送窗口 : n nn 是帧序号编码长度 , 发送窗口大小 最大是 2 n − 1 2^n - 12

n

−1 , 最小 1 11 ;




3 . 后退 N 帧协议 计算示例 :


数据链路层 采用 后退 N NN 帧协议 , 发送方 发送了 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 0,1,2,3,4,5,6,70,1,2,3,4,5,6,7 编号的数据帧 , 当计时器超时时 , 只接收到了 0 , 2 , 3 0 , 2, 30,2,3 帧的确认帧 , 发送方需要重发的帧数时 4 , 5 , 6 , 7 4,5,6,74,5,6,7 帧 ;



计时器超时 , 发送方 发送 已发送 , 但是没有被 确认 的帧 ;


确认机制 是 累计确认 的 , 发送方 接收到了 3 33 确认帧 , 说明 3 33 之前的帧已经成功接收了 , 虽然没有收到 1 11 确认帧 , 但是该帧已经默认接收成功 ;


重发 没有被确认的帧 , 即 4 , 5 , 6 , 7 4,5,6,74,5,6,7 帧 ;




参考博客 : 【计算机网络】数据链路层 : 后退 N 帧协议 GBN ( 滑动窗口 | 发送窗口长度 | “发送方“ 累计确认、超时机制 | “接收方“ 按序接收、确认帧发送机制 | 计算示例 )★




目录
相关文章
|
8月前
|
运维 监控 安全
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
在数字化时代,网络质量分析与流量回溯对保障业务运行至关重要。网络拥塞、丢包等问题可能导致业务中断、安全隐患及成本上升。传统工具常缺乏细粒度数据,难以溯源问题。流量回溯分析可还原现场,助力精准排障。AnaTraf网络流量分析仪作为专业工具,能高效定位问题,提升团队响应力,降低运营风险。
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
|
11月前
|
运维 监控 网络协议
面对全球化的泼天流量,出海企业观测多地域网络质量
网络监控与分析在保证网络可靠性、优化用户体验和提升运营效率方面发挥着不可或缺的作用,对于出海企业应对复杂的网络环境和满足用户需求具有重要意义,为出海企业顺利承接泼天流量保驾护航。
484 229
|
7月前
|
人工智能 运维 算法
AI加持下的网络流量管理:智能调度还是流量黑洞?
AI加持下的网络流量管理:智能调度还是流量黑洞?
269 8
|
7月前
|
存储 监控 网络协议
了解流量探针,助你更好地优化网络
流量探针是现代网络运维中不可或缺的工具,用于实时监测网络数据包,提供一手数据。它通过镜像方式采集、过滤、分析流量,支持从二层到七层协议解码,助力网络瓶颈排查、业务性能优化及安全威胁检测。合理部署流量探针可实现精细化网络管理,提升性能与安全性。
|
存储 算法 网络虚拟化
【计算机网络】学习笔记,第三篇:数据链路层
现在的光纤宽带接入 FTTx 都要使用 PPPoE 的方式进行接入。在 PPPoE 弹出的窗口中键入在网络运营商购买的用户名和密码,就可以进行宽带上网了 利用 ADSL 进行宽带上网时,从用户个人电脑到家中的 ADSL 调制解调器之间,也是使用 RJ-45 和 5 类线(即以太网使用的网线)进行连接的,并且也是使用 PPPoE 弹出的窗口进行拨号连接的
464 5
|
弹性计算 网络协议
计算机网络-数据链路层
计算机网络-数据链路层
计算机网络-数据链路层
|
云安全 安全 物联网
惊叹:《黑神话:悟空》所在 Steam 发行平台遭网络狂袭,威胁流量猛增两万倍!
8月24日,热门游戏《黑神话:悟空》的玩家发现主要发行平台Steam无法登录,引发“#Steam崩了#”登上微博热搜。起初猜测是在线人数过多导致,但完美世界竞技平台公告表示系遭受DDoS攻击。奇安信Xlab实验室详细解析了此次攻击,发现攻击指令暴增两万多倍,涉及多个僵尸网络。此次攻击对Steam造成严重影响,但也凸显了网络安全的重要性。为保障游戏环境安全,需加强服务器防护并选择可靠的防御公司。德迅云安全提供高防服务器、DDoS高防IP和安全加速SCDN等服务,助力游戏企业提升安全性。
|
移动开发 网络协议 测试技术
Mininet多数据中心网络拓扑流量带宽实验
Mininet多数据中心网络拓扑流量带宽实验
380 0
计算机网络学习记录 数据链路层 Day3 (上)(1)
计算机网络学习记录 数据链路层 Day3 (上)(1)
97 2
|
监控 安全 Serverless
SAE 防火墙的震撼之举:默认拦截公网一切流量,开启网络安全的无敌模式!
【8月更文挑战第7天】在数字化时代,网络安全至关重要。SAE(Serverless Application Engine,无服务器应用引擎)的防火墙功能默认阻止所有公网流量,为应用与数据提供坚实保护。这像坚固城门,将潜在威胁拒之门外,减少恶意攻击风险。如同在混沌中建立秩序,划定网络安全边界。但依赖默认设置不足,需根据业务需求配置规则,如开放特定端口或IP范围。还需持续监控防火墙效果,通过分析访问日志等手段及时调整优化,确保最佳防护效果。
219 0

热门文章

最新文章