【DBMS 数据库管理系统】OLAP 核心技术 : 多维数据模型 ( 多维数据模型 | 维 | 维成员 | 维层 | 维层次 | 维属性 | 度量 )

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 【DBMS 数据库管理系统】OLAP 核心技术 : 多维数据模型 ( 多维数据模型 | 维 | 维成员 | 维层 | 维层次 | 维属性 | 度量 )

文章目录

一、OLAP 核心技术

二、OLAP 多维数据模型

三、OLAP 多维数据模型 核心概念

四、维

五、维成员

六、维层

七、维层次

八、维属性

九、度量





一、OLAP 核心技术


OLAP 核心技术 :


多维数据模型

多维分析操作

多维查询及展示

数据方体技术





二、OLAP 多维数据模型


"用户数据视图" 概念 : 在数据分析时 , 用于面向分析的数据模型 , 用于为分析人员提供 多种观察数据的视角 , 和 面向分析的操作 ;



"多维数据模型" 作用 : 多维数据模型 是 数据仓库 和 OLAP 联机分析处理 的 基础 ;



"多维数据模型" 表示 :


多维数组 : 多维数据模型 的 数据结构 , 可以使用 多维数组 表示 ;

实例 : 维度 1 11 , 维度 2 22 , ⋯ \cdots⋯ , 维度 n nn , 维度之间的交叉点 , 存放度量值 , 每个度量值由若干数据组成 ; 如 二维数据 , 维度 1 11 是 x xx 轴 , 维度 2 22 数据是 y yy 轴 , 每个 x , y x,yx,y 都可以定位一个度量值 ;


"多维数据模型" 本质 : 多维数据模型 本质是 多维空间 , “维” 表示用户观察的对象 , 观察角度 , 多维空间中的 “点” 表示 度量 的值 ; OLAP 采用 “多维数据模型” ;



"多维数据模型" 与 传统的关系数据模型不同 :


OLTP 关系数据模型 : 传统关系数据模型是二维的 , 关系数据库有一套 “关系-代数理论” , 有非常深厚的数学基础 ;

OLAP 多维数据模型 : 多维数据模型是 随着 OLAP 产品的流行出现 , 缺乏理论基础 , 目前没有统一的多维数据模型 ;


"多维数据模型" 不同表示方式 :


使用 “关系模型” 表示 多维数据模型 ;

将 多维数据模型 形式化为 “多维空间” ;





三、OLAP 多维数据模型 核心概念


OLAP 多维数据模型 核心概念 :


维成员

维层

维层次

度量





四、维


"维" 简介 :


"维" 概念 : 人们 观察数据的 特定角度 , 事物的属性 ;

"维" 作用 : “维” 是商业活动的 基本要素 , 每个 “维” 有唯一的名称 , 如 时间维 , 地区维 等 ;

"维" 示例 : 分析 商品销售 数据 , 涉及 商品的 时间 , 地区 , 就是维 ;


时间维 : 商品在不同的时间的销售情况 ;

地区维 : 商品在不同的地区的销售情况 ;





五、维成员


"维成员" 简介 :


维 与 “维成员” : 维 是由若干 “维成员” 组成 ; 维的 一个取值 称为 “维成员” , 每个 “维成员” 都有一个名字 , 可以有 若干属性 描述 “维成员” 特征 ;

多维层 “维成员” : 维 可能是 多层的 , 该 维 的 “维成员” 可以是 在不同 维层 上的取值组合 ;

"维成员" 示例 :


"时间维" 示例 : 以 “时间维” 为例 , 时间维上有 100 100100 个时间数据 , 每个时间数据都是一个 “维成员” ;

3 33 个维层次 : “时间维” 有 : 年 , 月 , 日 , 三个层次 ;

多维层 “维成员” : 每个时间数据 ( “维成员” ) 可以由 3 33 个维层的数据组成 , 如 2020 20202020 年 02 0202 月 02 0202 日 , 分别是 年 , 月 , 日 , 三个维层 的数据 ;

单维层 “维成员” : 也可以只使用一个 维层 的数据 , 如 2020 20202020 年 , 只有一个维层的数据 ;

"维成员" 取值灵活 : “维成员” 取值 既可以使用 维 的全部维层数据 , 也可以只取一个维层的数据 , 也可以选择若干 维层 数据组合 ;





六、维层


"维层" 简介 :


"维层" 概念 : 观察数据时 , 除了从 某一角度 观察外 , 还需要 从 “不同细节程度” 去观察 , 这些 不同的细节程度 , 称为 “维层” ;


"维层" 示例 : 时间维 : 日 , 月 , 年 , 是时间维 的 维层 ; 地区维 : 街道 , 城市 , 省份 , 国家 , 是地区维的 维层 ;


"维层" 描述 : 维层 描述了 数据的 细节程度 , 抽象级别 , 每个维层都有一个名称 , 维层之间存在抽象级别决定关系 , 如上述地区维 , 国家下有很多省份 , 省份下有很多城市 , 城市下有很多街道 ;


"维层" 成员 : 每一个维层的具体取值 , 称为 维层成员 , 如 地区维 , 国家维层 , 有中国 , 美国 , 省份维层有 广东 , 浙江 ;


"维层" 本质 : 维层 本质上 是 对 维成员 的 组织分类方法 ;






七、维层次


"维层次" 简介 :


"维层次" 概念 : 若干 维层 可以构成 分类方法 , 在 维 中 , 可以有多个分类方法 , 每种分类方法叫做 “维层次” ;

"维层次" 示例 : 以 时间维 为例 , 按照 年 -> 季度 -> 月 -> 日 进行分类 , 这是一个维层次 , 也可以 按照 年 -> 月 -> 周 进行分类 , 这也是一个维层次 ; 上述是 时间维 的 两个维层次 ; 不同维层的组织方法 , 称为维层次 ;





八、维属性


"维属性" 简介 :


"维属性" 概念 : 维属性 用于 说明 维成员 具有的特征 ;


"维属性" 定义位置 : 维属性可以 定义在维成员上 , 也可以 定义在维层上 ; 如果将维属性 定义为维层上 , 那么该层次上的每个维成员都具有该属性 ;


"维属性" 定义示例 : 维成员 是 商店 , 为商店 定义 负责人 属性 , 可以直接在该 商店 维成员上定义 , 可以在 地区维 下定义该属性 , 如果在地区维 定义维属性 , 那么该地区所有的商店的负责人都是同一个人 ;






九、度量


"度量 " 简介 :


"度量" 概念 : 分析的 目标 或 对象 , 称为 度量 ;


"度量" 表示 : 度量一般有 名字 , 数据类型 , 单位 , 公式 等属性 ;


输入 “度量” : 从业务活动中获取的值 ; 如 销售额 ;


导出 “度量” : 经过计算得到的值 ; 如 利润 ;


聚集计算 : 求和 , 求平均值 等操作 ;


可累计型 “度量” : 可以沿 时间维 做聚集计算 , 称为 可累计型 的度量 , 如营业额 ;


不可累计型 “度量” : 不能沿 时间维 做聚集计算 , 称为 不可累计型 的度量 , 如库存 , 不能将不同时间的库存累加起来 ;



“度量” 是 多个 “维” 的 交叉点 ;


相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
2月前
|
SQL Java 数据库连接
除了JDBC,还有哪些常见的数据库访问技术?
除了JDBC,还有哪些常见的数据库访问技术?
224 2
|
3月前
|
监控 Java 关系型数据库
HikariCP 高性能数据库连接池技术详解与实践指南
本文档全面介绍 HikariCP 高性能数据库连接池的核心概念、架构设计和实践应用。作为目前性能最优异的 Java 数据库连接池实现,HikariCP 以其轻量级、高性能和可靠性著称,已成为 Spring Boot 等主流框架的默认连接池选择。本文将深入探讨其连接管理机制、性能优化策略、监控配置以及与各种框架的集成方式,帮助开发者构建高性能的数据访问层。
268 8
|
3月前
|
监控 Java 关系型数据库
HikariCP 高性能数据库连接池技术详解与实践指南
本文档全面介绍 HikariCP 高性能数据库连接池的核心概念、架构设计和实践应用。作为目前性能最优异的 Java 数据库连接池实现,HikariCP 以其轻量级、高性能和可靠性著称,已成为 Spring Boot 等主流框架的默认连接池选择。本文将深入探讨其连接管理机制、性能优化策略、监控配置以及与各种框架的集成方式,帮助开发者构建高性能的数据访问层。
186 1
|
3月前
|
SQL 数据管理 BI
数据库操作三基石:DDL、DML、DQL 技术入门指南
本文围绕数据库操作核心语言 DDL、DML、DQL 展开入门讲解。DDL 作为 “结构建筑师”,通过CREATE(建库 / 表)、ALTER(修改表)、DROP(删除)等命令定义数据库结构;DML 作为 “数据管理员”,以INSERT(插入)、UPDATE(更新)、DELETE(删除)操作数据表记录,需搭配WHERE条件避免误操作;DQL 作为 “数据检索师”,通过SELECT结合WHERE、ORDER BY、LIMIT等子句实现数据查询与统计。三者相辅相成,是数据库操作的基础,使用时需注意 DDL 的不可撤销性、DML 的条件约束及 DQL 的效率优化,为数据库学习与实践奠定基础。
|
4月前
|
缓存 关系型数据库 MySQL
MySQL数据库性能调优:实用技术与策略
通过秉持以上的策略实施具体的优化措施,可以确保MySQL数据库的高效稳定运行。务必结合具体情况,动态调整优化策略,才能充分发挥数据库的性能潜力。
188 0
|
2月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI 上下文工程是管理大模型输入信息的系统化框架,解决提示工程中的幻觉、上下文溢出与信息冲突等问题。通过上下文的采集、存储、加工与调度,提升AI推理准确性与交互体验。AnalyticDB PostgreSQL 版提供增强 RAG、长记忆、Supabase 等能力,助力企业构建高效、稳定的 AI 应用。
|
5月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
2月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
347 0
|
4月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。

热门文章

最新文章