InceptionV3实战:tensorflow2.X版本,InceptionV3图像分类任务(大数据集)

简介: 本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.X版本如何使用Keras实现图像分类,分类的模型使用InceptionV3。本文实现的算法有一下几个特点:1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。2、加载模型的预训练权重,训练时间更短。3、数据增强选用albumentations。

InceptionV3实战:tensorflow2.X版本,InceptionV3图像分类任务(大数据集)

摘要

本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.X版本如何使用Keras实现图像分类,分类的模型使用InceptionV3。本文实现的算法有一下几个特点:

1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。

2、加载模型的预训练权重,训练时间更短。

3、数据增强选用albumentations。

关于InceptionV3更详细的讲解,可以参考下面的文章:

【图像分类】一文彻底搞明白GoogLeNet_AI浩-CSDN博客

训练

第一步 导入需要的数据包,设置全局参数

import numpy as np
from tensorflow.keras.optimizers import Adam
import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.applications import InceptionV3
import os
import tensorflow as tf
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.models import Sequential
import albumentations

norm_size = 224
datapath = 'data/train'
EPOCHS = 20
INIT_LR = 3e-4
labelList = []
dicClass = {'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6,
            'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}
classnum = 12
batch_size = 4
np.random.seed(42)

这里可以看出tensorflow2.0以上的版本集成了Keras,我们在使用的时候就不必单独安装Keras了,以前的代码升级到tensorflow2.0以上的版本将keras前面加上tensorflow即可。

tensorflow说完了,再说明一下几个重要的全局参数:

  • norm_size = 224 设置输入图像的大小,InceptionV3默认的图片尺寸是224×224。
  • datapath = 'data/train' 设置图片存放的路径,在这里要说明一下如果图片很多,一定不要放在工程目录下,否则Pycharm加载工程的时候会浏览所有的图片,很慢很慢。
  • EPOCHS = 20 epochs的数量,关于epoch的设置多少合适,这个问题很纠结,一般情况设置300足够了,如果感觉没有训练好,再载入模型训练。
  • INIT_LR = 1e-3 学习率,一般情况从0.001开始逐渐降低,也别太小了到1e-6就可以了。
  • classnum = 12 类别数量,数据集有两个类别,所有就分为两类。
  • batch_size = 4 batchsize,根据硬件的情况和数据集的大小设置,太小了loss浮动太大,太大了收敛不好,根据经验来,一般设置为2的次方。windows可以通过任务管理器查看显存的占用情况。

    image-20220120064134160

    Ubuntu可以使用nvidia-smi查看显存的占用。

    image-20220120064407104

  • 定义numpy.random的随机因子。这样就可以固定随机的index

第二步 加载图片

和以前做法不同的是,这里不再处理图片,而是只返回图片路径的list列表。

具体做法详见代码:

def loadImageData():
    imageList = []
    listClasses = os.listdir(datapath)  # 类别文件夹
    print(listClasses)
    for class_name in listClasses:
        label_id = dicClass[class_name]
        class_path = os.path.join(datapath, class_name)
        image_names = os.listdir(class_path)
        for image_name in image_names:
            image_full_path = os.path.join(class_path, image_name)
            labelList.append(label_id)
            imageList.append(image_full_path)
    return imageList


print("开始加载数据")
imageArr = loadImageData()
labelList = np.array(labelList)
print("加载数据完成")

做好数据之后,我们需要切分训练集和测试集,一般按照4:1或者7:3的比例来切分。切分数据集使用train_test_split()方法,需要导入from sklearn.model_selection import train_test_split 包。例:

trainX, valX, trainY, valY = train_test_split(imageArr, labelList, test_size=0.2, random_state=42)

第三步 图像增强

train_transform = albumentations.Compose([
        albumentations.OneOf([
            albumentations.RandomGamma(gamma_limit=(60, 120), p=0.9),
            albumentations.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.9),
            albumentations.CLAHE(clip_limit=4.0, tile_grid_size=(4, 4), p=0.9),
        ]),
        albumentations.HorizontalFlip(p=0.5),
        albumentations.ShiftScaleRotate(shift_limit=0.2, scale_limit=0.2, rotate_limit=20,
                                        interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_CONSTANT, p=1),
        albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0)
    ])
val_transform = albumentations.Compose([
        albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0)
    ])

这个随意写的,具体的设置可以参考我以前写的文章:

图像增强库Albumentations使用总结_AI浩-CSDN博客_albumentations

写了两个数据增强,一个是用于训练,一个用于验证。验证集只需要对图片做归一化处理。

第四步 定义图像处理的方法

generator的主要作用是处理图像,并迭代的方式返回一个batch的图像以及对应的label。

思路:

在while循环:

  • 初始化input_samples和input_labels,连个list分别用来存放image和image对应的标签。
  • 循环batch_size次数:
    • 随机一个index
    • 分别从file_pathList和labels,得到图片的路径和对应的label
    • 读取图片
    • 如果是训练就训练的transform,如果不是就执行验证的transform。
    • resize图片
    • 将image转数组
    • 将图像和label分别放到input_samples和input_labels
  • 将list转numpy数组。
  • 返回一次迭代
def generator(file_pathList,labels,batch_size,train_action=False):
    L = len(file_pathList)
    while True:
        input_labels = []
        input_samples = []
        for row in range(0, batch_size):
            temp = np.random.randint(0, L)
            X = file_pathList[temp]
            Y = labels[temp]
            image = cv2.imdecode(np.fromfile(X, dtype=np.uint8), -1)
            if image.shape[2] > 3:
                image = image[:, :, :3]
            if train_action:
                image=train_transform(image=image)['image']
            else:
                image = val_transform(image=image)['image']
            image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)
            image = img_to_array(image)
            input_samples.append(image)
            input_labels.append(Y)
        batch_x = np.asarray(input_samples)
        batch_y = np.asarray(input_labels)
        yield (batch_x, batch_y)

第五步 保留最好的模型和动态设置学习率

ModelCheckpoint:用来保存成绩最好的模型。

语法如下:

keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1)

该回调函数将在每个epoch后保存模型到filepath

filepath可以是格式化的字符串,里面的占位符将会被epoch值和传入on_epoch_end的logs关键字所填入

例如,filepath若为weights.{epoch:02d-{val_loss:.2f}}.hdf5,则会生成对应epoch和验证集loss的多个文件。

参数

  • filename:字符串,保存模型的路径
  • monitor:需要监视的值
  • verbose:信息展示模式,0或1
  • save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
  • mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
  • save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
  • period:CheckPoint之间的间隔的epoch数

ReduceLROnPlateau:当评价指标不在提升时,减少学习率,语法如下:

keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下限

本例代码如下:

checkpointer = ModelCheckpoint(filepath='best_model.hdf5',
                               monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')

reduce = ReduceLROnPlateau(monitor='val_accuracy', patience=10,
                           verbose=1,
                           factor=0.5,
                           min_lr=1e-6)

第六步 建立模型并训练

model = Sequential()
model.add(InceptionV3(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(classnum, activation='softmax'))
optimizer = Adam(learning_rate=INIT_LR)
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(generator(trainX,trainY,batch_size,train_action=True),
                              steps_per_epoch=len(trainX) / batch_size,
                              validation_data=generator(valX,valY,batch_size,train_action=False),
                              epochs=EPOCHS,
                              validation_steps=len(valX) / batch_size,
                              callbacks=[checkpointer, reduce])
model.save('my_model.h5')
print(history)

上篇博文中没有使用预训练模型,这篇在使用的时候,出现了错误,经过查阅资料发现了这种方式是错误的,如下:

#model = ResNet50(weights="imagenet",input_shape=(224,224,3),include_top=False, classes=classnum) #include_top=False 去掉最后的全连接层

如果想指定classes,有两个条件:include_top:True, weights:None。否则无法指定classes。

所以指定classes就不能用预训练了,所以采用另一种方式:

model = Sequential()
model.add(ResNet50(include_top=False, pooling='avg', weights='imagenet'))
model.add(Dense(classnum, activation='softmax'))

另外,上篇文章使用的是fit_generator,新版本中fit支持generator方式,所以改为fit。

第六步 保留训练结果,并将其生成图片

loss_trend_graph_path = r"WW_loss.jpg"
acc_trend_graph_path = r"WW_acc.jpg"
import matplotlib.pyplot as plt

print("Now,we start drawing the loss and acc trends graph...")
# summarize history for accuracy
fig = plt.figure(1)
plt.plot(history.history["accuracy"])
plt.plot(history.history["val_accuracy"])
plt.title("Model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(acc_trend_graph_path)
plt.close(1)
# summarize history for loss
fig = plt.figure(2)
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("Model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(loss_trend_graph_path)
plt.close(2)
print("We are done, everything seems OK...")
# #windows系统设置10关机
#os.system("shutdown -s -t 10")

image-20220122201453485

image-20220122201421131

测试部分

单张图片预测

1、导入依赖

import cv2
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array
from  tensorflow.keras.models import load_model
import time
import os
import albumentations

2、设置全局参数

这里注意,字典的顺序和训练时的顺序保持一致

norm_size=224
imagelist=[]
emotion_labels = {
    0: 'Black-grass',
    1: 'Charlock',
    2: 'Cleavers',
    3: 'Common Chickweed',
    4: 'Common wheat',
    5: 'Fat Hen',
    6: 'Loose Silky-bent',
    7: 'Maize',
    8: 'Scentless Mayweed',
    9: 'Shepherds Purse',
    10: 'Small-flowered Cranesbill',
    11: 'Sugar beet',
}

3、设置图片归一化参数

归一化参数的设置和验证的参数保持一致

val_transform = albumentations.Compose([
        albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0)
    ])

3、加载模型

emotion_classifier=load_model("my_model.h5")

4、处理图片

处理图片的逻辑和训练集也类似,步骤:

  • 读取图片
  • 将图片resize为norm_size×norm_size大小。
  • 将图片转为数组。
  • 放到imagelist中。
  • 将list转为numpy数组。
image = cv2.imdecode(np.fromfile('data/test/0a64e3e6c.png', dtype=np.uint8), -1)
image = val_transform(image=image)['image']
image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)
image = img_to_array(image)
imagelist.append(image)
imageList = np.array(imagelist, dtype="float")

5、预测类别

预测类别,并获取最高类别的index。

pre=np.argmax(emotion_classifier.predict(imageList))
emotion = emotion_labels[pre]
t2=time.time()
print(emotion)
t3=t2-t1
print(t3)

批量预测

批量预测和单张预测的差别主要在读取数据上,以及预测完成后,对预测类别的处理。其他的没有变化。

步骤:

  • 加载模型。
  • 定义测试集的目录
  • 获取目录下的图片
  • 循环循环图片

    • 读取图片
    • 对图片做归一化处理。
    • resize图片
    • 转数组
    • 放到imageList中
  • 预测
predict_dir = 'data/test'
test11 = os.listdir(predict_dir)
for file in test11:
    filepath=os.path.join(predict_dir,file)

    image = cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), -1)
    image = val_transform(image=image)['image']
    image = cv2.resize(image, (norm_size, norm_size),      interpolation=cv2.INTER_LANCZOS4)
    image = img_to_array(image)
    imagelist.append(image)
imageList = np.array(imagelist, dtype="float")
out = emotion_classifier.predict(imageList)
print(out)
pre = [np.argmax(i) for i in out]

class_name_list=[emotion_labels[i] for i in pre]
print(class_name_list)
t2 = time.time()
t3 = t2 - t1
print(t3)

完整代码:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/77372789

相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习实战:基于TensorFlow与OpenCV的手语识别系统
深度学习实战:基于TensorFlow与OpenCV的手语识别系统
137 0
|
4月前
|
SQL 分布式计算 数据可视化
滴滴出行大数据数仓实战
滴滴出行大数据数仓实战
114 0
滴滴出行大数据数仓实战
|
4月前
|
机器学习/深度学习 存储 TensorFlow
TensorFlow 基础实战
TensorFlow 基础实战
|
4月前
|
机器学习/深度学习 算法 TensorFlow
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
【Python深度学习】Tensorflow对半环形数据分类、手写数字识别、猫狗识别实战(附源码)
54 0
|
4月前
|
SQL 分布式计算 大数据
【大数据技术Spark】DStream编程操作讲解实战(图文解释 附源码)
【大数据技术Spark】DStream编程操作讲解实战(图文解释 附源码)
35 0
|
4月前
|
安全 大数据 API
elasticsearch|大数据|elasticsearch的api部分实战操作以及用户和密码的管理
elasticsearch|大数据|elasticsearch的api部分实战操作以及用户和密码的管理
61 0
|
4月前
|
SQL 分布式计算 数据库
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
82 0
|
4月前
|
分布式计算 大数据 Scala
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
83 1
|
4月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
81 0
|
2月前
|
DataWorks 关系型数据库 对象存储
dataworks数据集问题之同步任务如何解决
DataWorks数据集是指在阿里云DataWorks平台内创建、管理的数据集合;本合集将介绍DataWorks数据集的创建和使用方法,以及常见的配置问题和解决方法。
38 4