【数据挖掘】数据挖掘简介 ( 6 个常用功能 | 数据挖掘结果判断 | 数据挖掘学习框架 | 数据挖掘分类 )

简介: 【数据挖掘】数据挖掘简介 ( 6 个常用功能 | 数据挖掘结果判断 | 数据挖掘学习框架 | 数据挖掘分类 )

文章目录

I . 数据挖掘 功能

II . 数据挖掘 结果判断

III . 数据挖掘 学习框架

IV . 数据挖掘 分类



I . 数据挖掘 功能


1 . 概念描述 ( Concept Description ) : 主要进行 表征 与 判断 操作 , 概括 , 总结 , 对比 数据的特征 ;


如 : 对产品分类 , 对真实世界进行描述 ;



2 . 关联分析 ( Association ) : 分析两个事物的发生的 相关性 , 因果性 ;


如 : 尿布 与 啤酒 经常被一起购买 ( 相关性分析 ) ; 银行对申请贷款的人的信用评级进行相关性分析 ;



3 . 分类和预测 ( Classification and Prediction ) : 数据挖掘中的重要部分 , 构造用于 描述 / 区分 对 未来预测 的 分类 / 概念 的模型 ;



有监督学习过程 : 分类和预测是典型的有监督学习的过程 , 先给一组训练数据 , 根据该数据进行训练 , 完成后对未知的数据进行预测 ;


如 : 预测票房 , 疾病 ; 预测未知数值 ; 根据气候对国家分类 ; 根据汽车油耗对汽车分类 ;



4 . 聚类分析 ( Cluster Analysis ) : 将数据分组 , 使类内部数据相似度最大化 , 使类之间数据的相似度最小化 ;


数据类型标签未知 : 将数据分组形成新类 , 分析找出分类的依据 ;



5 . 异常检测 ( Outlier Analysis ) :



① 异常值 ( Outlier ) : 不符合一般行为特点的数据 ;


② 异常值作用 : 该数据很重要 , 用于罕见事件分析 , 欺诈检测 ;



6 . 趋势与演化分析 ( Trend and Evolution Analysis ) : 趋势与偏差 , 如回归分析 ; 序列模式挖掘 , 周期性分析 ; 基于相似性的分析 ;




II . 数据挖掘 结果判断


数据挖掘结果判断 : 数据挖掘得出的 知识 / 模式 , 如何判断得出的结果是否有效 ;



① 客观判断方法 : 通过科学计算进行判断是否正确 , 该计算基于 模式 的t 统计和结构 ; ( 学术界判断 )


② 主观判断方法 : 基于人的个人感觉 , 根据该结果是否盈利 , 客户 ( 甲方 ) 给出评判结果 ; ( 工业界判断 )




III . 数据挖掘 学习框架


1 . 数据挖掘技术 ( 重点 ) : 聚类分析 , 异常检测 , 分类 , 关联规则分析 , 序列模式分析 , 数据方体与数据仓库 ;



2 . 数据挖掘原理 : 数据库技术 ( 索引 , 数据压缩 , 数据结构 ) , 人工智能 , 机器学习 , 统计学 , 信息论 , 理论计算 ( 近似 / 随机 算法 ) , 数学规划 , 几何计算 ;



3 . 数据挖掘应用 : CRM , 搜索分析 , 网络安全 , 生物信息分析 …




IV . 数据挖掘 分类


1 . 根据输入数据类型分类 :



① 根据 数据模型 分类 : 根据数据模型分类 , 分类成 关系 , 面向对象 , 对象 - 关系 , 数据仓库 等不同类型的数据模型的 数据挖掘 ;


② 根据 数据类型 分类 : 时间数据 , 空间数据 , 文本数据 , 音视频多媒体数据 , WEB 数据 等类型的数据挖掘 ;



2 . 根据输出数据类型分类 :



① 根据结果类型分析 : 特征分析 , 关联分析 , 聚类分析 , 偏差分析 , 异常检测分析 , 趋势和演化分析 等类型的 数据挖掘 ;


② 根据挖掘的知识的粒度与抽象级别分类 : 高抽象的泛化知识 , 原始层的知识 , 多层的知识 ;



3 . 根据采用的技术分类 : 如 机器学习 , 模式识别 , 神经网络 , 可视化 等技术类型的 数据挖掘 ;



4 . 根据应用领域分类 : 如 金融 , 生物 , 电讯 等领域的数据挖掘 ;


目录
相关文章
|
8月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】SVM原理详解及对iris数据集分类实战(超详细 附源码)
【数据挖掘】SVM原理详解及对iris数据集分类实战(超详细 附源码)
478 1
|
机器学习/深度学习 算法 数据可视化
数据挖掘(1)--基础知识学习
数据挖掘(Data Mining,DM)是知识发现(KDD)最核心的部分。 数据挖掘数学理论基础的发展,与统计学的发展密不可分。
148 0
|
8月前
|
机器学习/深度学习 人工智能 数据挖掘
【Python数据挖掘】数据挖掘简介及Jupyter notebook操作介绍(图文解释 超详细)
【Python数据挖掘】数据挖掘简介及Jupyter notebook操作介绍(图文解释 超详细)
153 0
|
8月前
|
机器学习/深度学习 存储 算法
【数据挖掘】KNN算法详解及对iris数据集分类实战(超详细 附源码)
【数据挖掘】KNN算法详解及对iris数据集分类实战(超详细 附源码)
363 0
【数据挖掘】KNN算法详解及对iris数据集分类实战(超详细 附源码)
|
数据采集 机器学习/深度学习 数据可视化
数据挖掘导论——分类与预测(三)
数据挖掘导论——分类与预测
269 0
数据挖掘导论——分类与预测(三)
|
数据挖掘
数据挖掘导论——分类与预测(二)
数据挖掘导论——分类与预测
273 0
数据挖掘导论——分类与预测(二)
|
数据挖掘
数据挖掘导论——分类与预测(一)
数据挖掘导论——分类与预测
290 0
数据挖掘导论——分类与预测(一)
|
机器学习/深度学习 Ubuntu 前端开发
数据挖掘基础学习一:VMware虚拟机Ubuntu上安装Python和IPython Notebook(Jupyter Notebook)完整步骤及需要注意的问题(以ubuntu-18.04.3为例)
数据挖掘基础学习一:VMware虚拟机Ubuntu上安装Python和IPython Notebook(Jupyter Notebook)完整步骤及需要注意的问题(以ubuntu-18.04.3为例)
974 0
数据挖掘基础学习一:VMware虚拟机Ubuntu上安装Python和IPython Notebook(Jupyter Notebook)完整步骤及需要注意的问题(以ubuntu-18.04.3为例)
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )(二)
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )(二)
331 0
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )(二)
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )(一)
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )(一)
594 0
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )(一)

热门文章

最新文章