面试官扎心一问:数据量很大,分页查询很慢,有什么优化方案?

简介: 面试官扎心一问:数据量很大,分页查询很慢,有什么优化方案?
  • 准备工作
  • 一般分页查询
  • 使用子查询优化
  • 使用 id 限定优化
  • 使用临时表优化
  • 关于数据表的id说明

当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。

准备工作

为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。

  • 表名:order_history
  • 描述:某个业务的订单历史表
  • 主要字段:unsigned int id,tinyint(4) int type
  • 字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
  • 数据量:5709294
  • MySQL版本:5.7.16 线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:
select count(*) from orders_history;

返回结果:5709294

三次查询时间分别为:

  • 8903 ms
  • 8323 ms
  • 8401 ms

一般分页查询

一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:

SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:

  • 第一个参数指定第一个返回记录行的偏移量,注意从0开始
  • 第二个参数指定返回记录行的最大数目
  • 如果只给定一个参数:它表示返回最大的记录行数目
  • 第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
  • 初始记录行的偏移量是 0(而不是 1)

下面是一个应用实例:

select * from orders_history where type=8 limit 1000,10;

该条语句将会从表 orders_history 中查询offset: 1000开始之后的10条数据,也就是第1001条到第1010条数据(1001 <= id <= 1010)。

数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:

select * from orders_history where type=8 order by id limit 10000,10;

三次查询时间分别为:

  • 3040 ms
  • 3063 ms
  • 3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:

select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询时间如下:

  • 查询1条记录:3072ms 3092ms 3002ms
  • 查询10条记录:3081ms 3077ms 3032ms
  • 查询100条记录:3118ms 3200ms 3128ms
  • 查询1000条记录:3412ms 3468ms 3394ms
  • 查询10000条记录:3749ms 3802ms 3696ms

另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。

针对查询偏移量的测试:

select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:

  • 查询100偏移:25ms 24ms 24ms
  • 查询1000偏移:78ms 76ms 77ms
  • 查询10000偏移:3092ms 3212ms 3128ms
  • 查询100000偏移:3878ms 3812ms 3798ms
  • 查询1000000偏移:14608ms 14062ms 14700ms

随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。

这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。

使用子查询优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。

select * from orders_history where type=8 limit 100000,1;
select id from orders_history where type=8 limit 100000,1;
select * from orders_history where type=8 and
id>=(select id from orders_history where type=8 limit 100000,1)
limit 100;
select * from orders_history where type=8 limit 100000,100;

4条语句的查询时间如下:

  • 第1条语句:3674ms
  • 第2条语句:1315ms
  • 第3条语句:1327ms
  • 第4条语句:3710ms

针对上面的查询需要注意:

  • 比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
  • 比较第2条语句和第3条语句:速度相差几十毫秒
  • 比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍

这种方式相较于原始一般的查询方法,将会增快数倍。

使用 id 限定优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

select * from orders_history where type=2
and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。

还可以有另外一种写法:

select * from orders_history where id >= 1000001 limit 100;

当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:

select * from orders_history where id in
(select order_id from trade_2 where goods = 'pen')
limit 100;

这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。

使用临时表优化

这种方式已经不属于查询优化,这儿附带提一下。

对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。

关于数据表的id说明

一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。

如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。

使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 select id,然后再 select *;

本人才疏学浅,难免犯错,若发现文中有错误遗漏,望不吝赐教。

目录
相关文章
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
缓存 算法 Cloud Native
面试技巧:如何在有限时间内优化代码性能
面试技巧:如何在有限时间内优化代码性能
80 0
|
canal 中间件 Java
阿里终面:业务主表读写缓慢如何优化?
阿里终面:业务主表读写缓慢如何优化?
|
存储 缓存 NoSQL
Redis缓存穿透和雪崩相关概念(面试高频,工作常用)
Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面,但同时,它也带来了一些问题,其中,最重要的问题,就是数据的一致性问题。从严格意义上讲,这个无解。如果对数据的一致性要求很高,那么就不能使用缓存。
162 0
Redis缓存穿透和雪崩相关概念(面试高频,工作常用)
|
网络协议 Java 关系型数据库
分库分表就能无限扩容吗,解释得太好了!
前言 像我这样的菜鸟,总会有各种疑问,刚开始是对 JDK API 的疑问,对 NIO 的疑问,对 JVM 的疑问,当工作几年后,对服务的可用性,可扩展性也有了新的疑问,什么疑问呢?其实是老生常谈的话题:服务的扩容问题。
分库分表就能无限扩容吗,解释得太好了!
|
存储 关系型数据库 MySQL
MySQL索引的测试 (千万级数据) 以及特点总结|周末学习
创建表 可以看到这里创建的索引类型都是 BTREE -- ---------------------------- -- Table structure for mall -- ---------------------------- DROP TABLE IF EXISTS `mall`; CREATE TABLE `mall` ( `id` int(11) NOT NULL AUTO_INCREMENT, `categoryId` int(11) NOT NULL, `name` varchar(255) CHARACTER SET utf8 COLLATE utf8_gen
291 0
|
存储 SQL 关系型数据库
谈谈MYSQL索引是如何提高查询效率的
什么是索引,索引的底层数据结构,索引的几种类型
谈谈MYSQL索引是如何提高查询效率的
|
存储 缓存 负载均衡
C++高并发场景下读多写少的优化方案
C++高并发场景下读多写少的优化方案 述 一谈到高并发的优化方案,往往能想到模块水平拆分、数据库读写分离、分库分表,加缓存、加mq等,这些都是从系统架构上解决。单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读多写少的场景出发,探讨其解决方案,以其更好的实现高并发。 不同的业务场景,读和写的频率各有侧重,有两种常见的业务场景: 读多写少:典型场景如广告检索端、白名单更新维护、loadbalancer 读少写多:典型场景如qps统计 本文针对读多写少(也称一写多读)场景下遇到的问题进行分析,并探讨一种合适的解决方案。
716 0
C++高并发场景下读多写少的优化方案
|
存储 SQL 关系型数据库
面试官扎心一问:数据量很大,分页查询很慢,有什么优化方案?
面试官扎心一问:数据量很大,分页查询很慢,有什么优化方案?
595 0
|
SQL 算法 关系型数据库
[MySQL优化案例]系列 — 分页优化
[MySQL优化案例]系列 — 分页优化
149 0