JDK9对String字符串的新一轮优化,不可不知

简介: JDK9对String字符串的新一轮优化,不可不知

String类可以说是Java编程中使用最多的类了,如果能对String字符串的性能进行优化,那么程序的性能必然能大幅提升。

这不JDK9就对String字符串进行了改进升级,在某些场景下可以让String字符串内存减少一半,进而减少JVM的GC次数。

String的底层存储

在面试的时候我们通常会说String字符串有不可变的特性,每次都要创建新的字符串。那么,为什么String字符串是不可变的呢?

先来看一下String字符串的底层存储结构:

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
    private final char value[];
    public String() {
        this.value = "".value;
    }
    public String(String original) {
        this.value = original.value;
        this.hash = original.hash;
    }
    // ...
}

看到什么了?当我们new一个String对象时,对应的字符串其实是以char数组的形式存储在String对象内部。而这个char数组是final的,也就是说不可变的。

这也就是为什么我们说String字符串拥有不可变的特性,当字符串改变了,char数组不可变,就只能创建一个新的对象,新的char数组了。

底层存储的优化

上面说的情况是JDK8及以前版本,到了JDK9,String中字符串的存储不再用char数组了,改用byte数组。

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
    @Stable
    private final byte[] value;
    private final byte coder;
    @Native static final byte LATIN1 = 0;
    @Native static final byte UTF16  = 1;
    static final boolean COMPACT_STRINGS;
    public String() {
        this.value = "".value;
        this.coder = "".coder;
    }
    @HotSpotIntrinsicCandidate
    public String(String original) {
        this.value = original.value;
        this.coder = original.coder;
        this.hash = original.hash;
    }
    // ...
}

不仅将char数组改为byte数组,而且新增了一个coder的成员变量。

在程序中,绝大多数字符串只包含英文字母数字等字符,使用Latin-1编码,一个字符占用一个byte。如果使用char,一个char要占用两个byte,会占用双倍的内存空间。

但是,如果字符串中使用了中文等超出Latin-1表示范围的字符,使用Latin-1就没办法表示了。这时JDK会使用UTF-16编码,那么占用的空间和旧版(使用char[])是一样的。

coder变量代表编码的格式,目前String支持两种编码格式Latin-1和UTF-16。Latin-1需要用一个字节来存储,而UTF-16需要使用2个字节或者4个字节来存储。

据说这一改进方案是JDK的开发人员用大数据和人工能智能,调研了成千上万的应用程序的heapdump信息后,得出:大部分的String都是以Latin-1字符编码来表示的,只需要一个字节存储就够了,两个字节完全是浪费。

COMPACT_STRINGS属性则是用来控制是否开启String的compact功能。默认情况下是开启的。可以使用-XX:-CompactStrings参数来对此功能进行关闭。

改进的好处

改进的好处是非常明显的,首先如果项目中使用Latin-1字符集居多,内存的占用大幅度减少,同样的硬件配置可以支撑更多的业务。

当内存减少之后,进一步导致减少GC次数,进而减少Stop-The-World的频次,同样会提升系统的性能。

小结

随着JDK的迭代String字符串的内存结构及方法等也在不断地进行演变。这是因为String字符串往往是JVM中占用内存最多的类,通过对它的改造升级,对性能的提升会更加明显。

目录
相关文章
|
2月前
|
安全 Java API
【Java字符串操作秘籍】StringBuffer与StringBuilder的终极对决!
【8月更文挑战第25天】在Java中处理字符串时,经常需要修改字符串,但由于`String`对象的不可变性,频繁修改会导致内存浪费和性能下降。为此,Java提供了`StringBuffer`和`StringBuilder`两个类来操作可变字符串序列。`StringBuffer`是线程安全的,适用于多线程环境,但性能略低;`StringBuilder`非线程安全,但在单线程环境中性能更优。两者基本用法相似,通过`append`等方法构建和修改字符串。
48 1
|
6天前
|
存储 JavaScript 前端开发
JavaScript 字符串(String) 对象
JavaScript 字符串(String) 对象
13 3
|
10天前
|
索引
Sass String(字符串) 函数
Sass String(字符串) 函数用于处理字符串并获取相关信息。
21 1
|
1月前
|
监控 IDE Java
【Java性能调优新工具】JDK 22性能分析器:深度剖析,优化无死角!
【9月更文挑战第9天】JDK 22中的性能分析器为Java应用的性能调优提供了强大的支持。通过深度集成、全面监控、精细化分析和灵活报告生成等核心优势,性能分析器帮助开发者实现了对应用性能的全面掌控和深度优化。在未来的Java开发过程中,我们期待性能分析器能够继续发挥重要作用,为Java应用的性能提升贡献更多力量。
|
1月前
|
IDE Java 数据处理
【字符串构建的全新时代】JDK 22字符串模板:让字符串操作如行云流水,代码更流畅!
【9月更文挑战第8天】虽然目前JDK 22的确切内容尚未公布,但我们可以根据Java语言的演进趋势和社区的需求,构想出一种可能在未来版本中引入的字符串模板机制。这种机制有望为Java的字符串操作带来革命性的变化,让代码编写如行云流水般流畅。我们期待Java语言能够不断进化,为开发者们提供更加高效、便捷和强大的编程工具。
|
1月前
|
存储 C++
C++(五)String 字符串类
本文档详细介绍了C++中的`string`类,包括定义、初始化、字符串比较及数值与字符串之间的转换方法。`string`类简化了字符串处理,提供了丰富的功能如字符串查找、比较、拼接和替换等。文档通过示例代码展示了如何使用这些功能,并介绍了如何将数值转换为字符串以及反之亦然的方法。此外,还展示了如何使用`string`数组存储和遍历多个字符串。
|
2月前
|
C# 开发者 UED
WPF开发者必备秘籍:深度解析文件对话框使用技巧,打开与保存文件原来如此简单!
【8月更文挑战第31天】在WPF应用开发中,文件操作是常见需求。本文详细介绍了如何利用`Microsoft.Win32`命名空间下的`OpenFileDialog`和`SaveFileDialog`类来正确实现文件打开与保存功能。通过示例代码展示了如何设置文件过滤器、初始目录等属性,并使用对话框进行文件读写操作。正确使用文件对话框能显著提升用户体验,使应用更友好易用。
54 0
|
2月前
|
API C# 开发者
WPF图形绘制大师指南:GDI+与Direct2D完美融合,带你玩转高性能图形处理秘籍!
【8月更文挑战第31天】GDI+与Direct2D的结合为WPF图形绘制提供了强大的工具集。通过合理地使用这两种技术,开发者可以创造出性能优异且视觉效果丰富的WPF应用程序。在实际应用中,开发者应根据项目需求和技术背景,权衡利弊,选择最合适的技术方案。
57 0
|
22天前
|
Java
安装JDK18没有JRE环境的解决办法
安装JDK18没有JRE环境的解决办法
|
2月前
|
Java 关系型数据库 MySQL
"解锁Java Web传奇之旅:从JDK1.8到Tomcat,再到MariaDB,一场跨越数据库的冒险安装盛宴,挑战你的技术极限!"
【8月更文挑战第19天】在Linux上搭建Java Web应用环境,需安装JDK 1.8、Tomcat及MariaDB。本指南详述了使用apt-get安装OpenJDK 1.8的方法,并验证其版本。接着下载与解压Tomcat至`/usr/local/`目录,并启动服务。最后,通过apt-get安装MariaDB,设置基本安全配置。完成这些步骤后,即可验证各组件的状态,为部署Java Web应用打下基础。
43 1