【视频特辑】数据分析不卡顿,十亿数据0.3秒搞定!看看Quick引擎是如何做到的吧~

本文涉及的产品
智能商业分析 Quick BI,专业版 50license 1个月
简介: 报表加载慢、分析卡顿导致思路被打断...常常会给数据分析师造成很大困扰。 不如试试Quick引擎,十亿数据只需0.3秒就可以完成数据分析!

image.png

【点击查看视频】


如何选择适合的Quick引擎加速模式?

在数据分析查询的过程当中,遇到以下场景,可以试试Quick引擎的加速功能。


(1)比较固定的查询模版

比如用于大屏展示的仪表板,这类偏固定展示类的的报表、或者是报表上的筛选项较少,以及筛选项变化范围比较小的数据应用场景, 推荐开启数据集上的缓存功能。用户可以自行设置缓存的有效期,在有效期内,相同的查询会命中缓存,直接返回有效期内第一次查询的结果。

对于该类报表,缓存模式是 Quick BI 最简单有效的加速方式,直接命中缓存,会在毫秒级时间内返回查询结果。


(2)数据源查询缓慢,同时对数据实时性要求不高,能接受天级别的数据

如果对历史数据进行分析,比如到前一天的数据。这类数据分析需求,可以开启抽取加速。抽取加速默认全表加速,允许用户同步 T-1 的数据,到 Quick 引擎的高性能存储及分析模块中,后续的查询和计算会直接在 Quick 引擎里进行, 在有效提升查询性能的同时,也可以避免查询下发到客户的数据库,减少客户数据库的性能压力。

同时,抽取加速也可以开启智能预计算模式,会对用户的查询历史进行分析, 提前对可能的查询进行预聚合。用户的查询如果命中,则会直接返回聚合结果。 开启 Quick 引擎的抽取加速后,可以做到亿级数据,亚秒级响应。


(3)客户数仓(如 MaxCompute、Hive)查询缓慢,但是对数据实时性有较高要求

有些用户数据量较大,使用了 MaxCompute 或者 Hive 等作为数据源, 查询性能较低,但同时又需要对当天的最新数据进行分析。这类用户可以在数据集的 Quick 引擎里开启实时加速,通过引擎内置的 MPP 内存计算引擎,对数据进行实时的内存计算,从而达到加速的目的。

目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
12天前
|
SQL 数据挖掘 BI
数据分析的尽头,是跳出数据看数据!
当前许多企业在数据分析上投入大量资源,却常陷入“数据越看越细,业务越看越虚”的困境。报表繁杂、指标众多,但决策难、行动少,分析流于形式。真正有价值的数据分析,不在于图表多漂亮,而在于能否带来洞察、推动决策、指导行动。本文探讨如何跳出数据、回归业务场景,实现数据驱动的有效落地。
|
9月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
289 71
|
8月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
425 92
|
9月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
358 73
|
12月前
|
数据挖掘 PyTorch TensorFlow
|
7月前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
272 21
|
6月前
|
机器学习/深度学习 传感器 数据采集
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
625 0
|
8月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
225 22
|
10月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
541 56

热门文章

最新文章