数据结构与算法之计数排序

简介: 计数排序(Counting Sort)不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。

常用数据结构与算法实现

以下博客根据B站罗召勇老师视频:数据结构与算法基础-Java版(罗召勇)写的详细笔记


数据结构与算法基础:


数据结构与算法之基础概述


数据结构:


(一)数据结构与算法之数组

(二)数组结构与算法之栈

(三)数据结构与算法之队列

(四)数据结构与算法之链表

(五)数据结构与算法之树结构基础

(六)数据结构与算法之二叉树大全

(七)数据结构与算法之Huffman tree(赫夫曼树 / 霍夫曼树 / 哈夫曼树 / 最优二叉树)

(八)数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树)

(九)数据结构与算法之图结构


十大经典算法:


(一)数据结构与算法之冒泡排序(含改进版)

(二)数据结构与算法之选择排序(含改进版)

(三)数据结构与算法之插入排序(含改进版)

(四)数据结构与算法之希尔排序

(五)数据结构与算法之归并排序

(六)数据结构与算法之快速排序

(七)数据结构与算法之堆排序

(八)数据结构与算法之计数排序

(九)数据结构与算法之桶排序

(十)数据结构与算法之基数排序


计数排序概念

计数排序(Counting Sort)不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。


排序步骤:


找出待排序的数组中最大和最小的元素;

统计数组中每个值为i的元素出现的次数,存入数组C的第i项;

对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);

反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

动图展示:

99.gif



代码实现

import java.util.Arrays;
public class CountingSort {
    public static void main(String[] args) {
        //测试
        int[] arr = {1, 4, 6, 7, 5, 4, 3, 2, 1, 4, 5, 10, 9, 10, 3};
        sortCount(arr);
        System.out.println(Arrays.toString(arr));
//        [1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 9, 10, 10]
    }
    //计数排序
    public static void sortCount(int[] arr) {
        //一:求取最大值和最小值,计算中间数组的长度:
        int max = arr[0];
        int min = arr[0];
        int len = arr.length;
        for (int i : arr) {
            if (i > max) {
                max = i;
            }
            if (i < min) {
                min = i;
            }
        }
        //二、有了最大值和最小值能够确定中间数组的长度(中间数组是用来记录原始数据中每个值出现的频率)
        int[] temp = new int[max - min + 1];
        //三.循环遍历旧数组计数排序: 就是统计原始数组值出现的频率到中间数组temp中
        for (int i = 0; i < len; i++) {
            temp[arr[i] - min] += 1;
        }
        //四、遍历输出
        //先循环每一个元素  在计数排序器的下标中
        for (int i = 0, index = 0; i < temp.length; i++) {
            int item = temp[i];
            循环出现的次数
            while (item-- != 0) {
                //以为原来减少了min现在加上min,值就变成了原来的值
                arr[index++] = i + min;
            }
        }
    }
}

时间复杂度

最优时间复杂度:o(n+k)

最坏时间复杂度:o(n+k)

稳定性:不稳定

计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法

相关文章
|
5月前
|
存储 搜索推荐 算法
【初阶数据结构篇】归并排序和计数排序(总结篇)
归并排序(MERGE-SORT)是建⽴在归并操作上的⼀种有效的排序算法,该算法是采⽤分治法(Divide andConquer)的⼀个⾮常典型的应⽤。
65 0
|
7月前
|
算法 搜索推荐
数据结构算法--6 希尔排序和计数排序
**希尔排序**是插入排序的改进版,通过分组插入来提高效率。它逐步减少元素间的间隔(增量序列),每次对每个间隔内的元素进行插入排序,最终增量为1时进行最后一次直接插入排序,实现整体接近有序到完全有序的过程。例如,对数组`5, 7, 4, 6, 3, 1, 2, 9, 8`,先以间隔`d=4`排序,然后`d=2`,最后`d=1`,完成排序。计数排序则适用于0到100的数值,通过统计每个数出现次数,创建对应计数数组,再根据计数重建有序数组,时间复杂度为`O(n)`。
|
3月前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
36 1
|
3月前
|
搜索推荐 Java Go
深入了解计数排序算法
深入了解计数排序算法
55 4
|
6月前
|
存储 算法 搜索推荐
|
7月前
|
存储 算法 搜索推荐
【数据结构】归并排序的非递归写法和计数排序
【数据结构】归并排序的非递归写法和计数排序
|
8月前
|
存储 人工智能 算法
[数据结构]——非比较排序—计数排序
[数据结构]——非比较排序—计数排序
|
7月前
|
搜索推荐 算法
【C/排序算法】:归并排序和计数排序
【C/排序算法】:归并排序和计数排序
52 0
|
8月前
|
存储 算法 前端开发
前端算法之计数排序
前端算法之计数排序
45 1
|
8月前
数据结构——lesson13排序之计数排序
数据结构——lesson13排序之计数排序