机器学习中Gradient Descent (Vanilla)梯度下降法的过程

简介: 机器学习中Gradient Descent (Vanilla)梯度下降法的过程

Gradient Descent

最近在搞Deep Leaning,数学不好的我学的头大啊。

在学之前,你或许和我一样

image.png

First

从初始参数起始点

image.png

开始

image.png

  • Second

计算一下

image.png

image.png

然后,向着Gradient反方向去Update(更新)参数

image.png

image.png

  • Thrid

得到新参数后,不断重复上两步过程

image.png

image.png

image.png

直到最终找到 Local Minima


相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
梯度下降求极值,机器学习&深度学习
梯度下降求极值,机器学习&深度学习
60 0
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
191 0
|
机器学习/深度学习 存储 算法
机器学习面试笔试知识点-决策树、随机森林、梯度提升决策树(GBDT)、XGBoost、LightGBM、CatBoost
机器学习面试笔试知识点-决策树、随机森林、梯度提升决策树(GBDT)、XGBoost、LightGBM、CatBoost
571 0
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘GBDT:梯度提升决策树
【机器学习】揭秘GBDT:梯度提升决策树
|
4月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
189 2
|
4月前
|
机器学习/深度学习 算法 数据挖掘
|
4月前
|
机器学习/深度学习 算法
【机器学习】梯度消失和梯度爆炸的原因分析、表现及解决方案
本文分析了深度神经网络中梯度消失和梯度爆炸的原因、表现形式及解决方案,包括梯度不稳定的根本原因以及如何通过网络结构设计、激活函数选择和权重初始化等方法来解决这些问题。
560 0
|
6月前
|
机器学习/深度学习 数据采集 分布式计算
【机器学习】XGBoost: 强化学习与梯度提升的杰作
在机器学习的广阔领域中,集成学习方法因其卓越的预测性能和泛化能力而备受瞩目。其中,XGBoost(Extreme Gradient Boosting)作为梯度提升决策树算法的杰出代表,自其诞生以来,便迅速成为数据科学竞赛和工业界应用中的明星算法。本文旨在深入浅出地介绍XGBoost的核心原理、技术优势、实践应用,并探讨其在模型调优与解释性方面的考量,为读者提供一个全面且深入的理解框架。
201 2
|
6月前
|
机器学习/深度学习 存储 人工智能
【机器学习】GBDT (Gradient Boosting Decision Tree) 深入解析
GBDT,全称为Gradient Boosting Decision Tree,即梯度提升决策树,是机器学习领域中一种高效且强大的集成学习方法。它通过迭代地添加决策树以逐步降低预测误差,从而在各种任务中,尤其是回归和分类问题上表现出色。本文将深入浅出地介绍GBDT的基本原理、算法流程、关键参数调整策略以及其在实际应用中的表现与优化技巧。
1439 1
|
6月前
|
机器学习/深度学习 算法 网络架构
**深度学习中的梯度消失与爆炸影响模型训练。梯度消失导致输入层参数更新缓慢,梯度爆炸使训练不稳。
【6月更文挑战第28天】**深度学习中的梯度消失与爆炸影响模型训练。梯度消失导致输入层参数更新缓慢,梯度爆炸使训练不稳。解决办法包括:换激活函数(如ReLU)、权重初始化、残差连接、批量归一化(BN)来对抗消失;梯度裁剪、权重约束、RMSProp或Adam优化器来防止爆炸。这些策略提升网络学习能力和收敛性。**
65 0